Advertisement

Biosemiotics

, Volume 5, Issue 3, pp 331–367 | Cite as

Anticipatory Functions, Digital-Analog Forms and Biosemiotics: Integrating the Tools to Model Information and Normativity in Autonomous Biological Agents

  • Argyris Arnellos
  • Luis Emilio Bruni
  • Charbel Niño El-Hani
  • John Collier
Original Paper

Abstract

We argue that living systems process information such that functionality emerges in them on a continuous basis. We then provide a framework that can explain and model the normativity of biological functionality. In addition we offer an explanation of the anticipatory nature of functionality within our overall approach. We adopt a Peircean approach to Biosemiotics, and a dynamical approach to Digital-Analog relations and to the interplay between different levels of functionality in autonomous systems, taking an integrative approach. We then apply the underlying biosemiotic logic to a particular biological system, giving a model of the B-Cell Receptor signaling system, in order to demonstrate how biosemiotic concepts can be used to build an account of biological information and functionality. Next we show how this framework can be used to explain and model more complex aspects of biological normativity, for example, how cross-talk between different signaling pathways can be avoided. Overall, we describe an integrated theoretical framework for the emergence of normative functions and, consequently, for the way information is transduced across several interconnected organizational levels in an autonomous system, and we demonstrate how this can be applied in real biological phenomena. Our aim is to open the way towards realistic tools for the modeling of information and normativity in autonomous biological agents.

Keywords

Function Normativity Information Anticipation Biosemiotics Meaning Emergence Representational content Autonomous agent 

Notes

Acknowledgments

Authors wish to thank the editors for valuable comments and suggestions during the reviewing process. Argyris Arnellos holds a Marie Curie Research Fellowship (IEF-273635).

References

  1. Adami, C. (2004). Information theory in molecular biology. Physics of Life Reviews, 1, 3–22.CrossRefGoogle Scholar
  2. Arnellos, A., Spyrou, T., & Darzentas, J. (2006). Dynamic interactions in artificial environments: causal and non-causal aspects for the emergence of meaning. Systemics, Cybernetics and Informatics, 3, 82–89.Google Scholar
  3. Arnellos, A., Spyrou, T., & Darzentas, J. (2007). Exploring creativity in the design process: a systems-semiotic perspective. Cybernetics and Human Knowing, 14(1), 37–64.Google Scholar
  4. Arnellos, A., Spyrou, T., & Darzentas, J. (2010). Towards the naturalization of agency based on an interactivist account of autonomy. New Ideas in Psychology, 28(3), 296–311.CrossRefGoogle Scholar
  5. Barandiaran, X., Rohde, M., & Di Paolo, E. (2009). Defining agency: individuality, normativity, asymmetry and spatiotemporality in action. Adaptive Behavior, 17(5), 367–386.CrossRefGoogle Scholar
  6. Barbieri, M. (2001). The organic codes: The birth of semantic biology. Acona, Italy: peQuod. Reprinted 2002. Cambridge: Cambridge University Press.Google Scholar
  7. Bateson, G. (1972). Steps to an ecology of mind. London: Paladin.Google Scholar
  8. Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews/Molecular Cell Biology, 1, 11–21.CrossRefGoogle Scholar
  9. Bickhard, M. H. (1993). Representational content in humans and machines. Experimental and Theoretical Artificial Intelligence, 5, 285–333.CrossRefGoogle Scholar
  10. Bickhard, M. H. (2000a). Autonomy, function, and representation. Communication and Cognition – Artificial Intelligence, 17, 111–131.Google Scholar
  11. Bickhard, M. H. (2000b). Information and representation in autonomous agents. Journal of Cognitive Systems Research, 1(2).Google Scholar
  12. Bickhard, M. H. (2001). Function, anticipation, representation. In D. M. Dubois (Ed.), Computing anticipatory systems. CASYS 2000 - Fourth International Conference (pp. 459–469). Melville: American Institute of Physics.Google Scholar
  13. Bickhard, M. H. (2009). Interactivism: a manifesto. New Ideas in Psychology, 27, 85–95.CrossRefGoogle Scholar
  14. Brier, S. (1992) Information and consciousness: A critique of the mechanistic foundation of the concept of information (Vol. 1, no. 2/3, pp 71–94). In Cybernetics & Human Knowing, Aalborg, Denmark.Google Scholar
  15. Brier, S. (2004). Cybersemiotics and the problem of the information-processing paradigm as a candidate for a unified science of information behind library and information science. Library Trends, 52(3), 629–657.Google Scholar
  16. Brier, S. (2008). Cybersemiotics: Why information is not enough. Toronto Studies in Semiotics and Communication, University of Toronto Press.Google Scholar
  17. Brillouin, L. (1962). Science and information theory (2nd ed.). New York: Academic.Google Scholar
  18. Brooks, D. R., & Wiley, E. O. (1988). Evolution as entropy: Toward a unified theory of biology (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  19. Brooks, D. R., Collier, J. D., Maurer, B. A., Smith, J. D. H., & Wiley, E. O. (1989). Entropy and information in biological systems. Biology and Philosophy, 4, 407–432.CrossRefGoogle Scholar
  20. Bruni, L. E. (2002). Does “quorum sensing” imply a new type of biological information? Sign Systems Studies (Vol. 30.1). Tartu: Tartu University Press.Google Scholar
  21. Bruni, L. E. (2003). A sign-theoretic approach to biotechnology. Ph.D. dissertation, Institute of Molecular Biology, University of Copenhagen.Google Scholar
  22. Bruni, L. E. (2007). Cellular semiotics and signal transduction. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis. Berlin: Springer.Google Scholar
  23. Bruni, L. E. (2008a). Semiotic freedom: emergence and teleology in biological and cognitive interfaces. American Journal of Semiotics, 24, 57–73.Google Scholar
  24. Bruni, L. E. (2008b). Hierarchical categorical perception in sensing and cognitive processes. Biosemiotics, 1, 113–130.CrossRefGoogle Scholar
  25. Campbell, D. T. (1974). ‘Downward causation’ in hierarchically organized biological systems. In F. Ayala & Th Dobzhansky (Eds.), Studies in the philosophy of biology: Reduction and related problems (pp. 179–186). Los Angeles: University of California Press.Google Scholar
  26. Carafoli, E. (2003). The calcium-signalling saga: tap water and protein crystals. Nature/Molecular Cell Biology, 4, 326–332.Google Scholar
  27. Chaitin, G. (1990). Information, randomness and incompleteness: Papers on algorithmic information theory. World Scientific.Google Scholar
  28. Collier, J. (1986). Entropy in evolution. Biology and Philosophy, 1, 5–24.CrossRefGoogle Scholar
  29. Collier, J. (1988). Supervenience and reduction in biological hierarchies. In M. Matthen & B. Linsky (Eds.), Philosophy and biology. Canadian Journal of Philosophy Supplementary, 14, 209–234).Google Scholar
  30. Collier, J. D. (1990a). Intrinsic information. In P. Hanson (Ed.), Information, language and cognition: Vancouver studies in cognitive science (Vol. 1, pp. 390–409). Oxford: Oxford University Press.Google Scholar
  31. Collier, J. D. (1990b). Two faces of Maxwell’s demon reveal the nature of irreversibility. Studies in the History and Philosophy of Science, 21, 257–268.CrossRefGoogle Scholar
  32. Collier, J. (1998). Information increase in biological systems: How does adaptation fit? In G. van der Vijver, S. N. Salthe, & M. Delpos (Eds.), Evolutionary systems (pp. 129–140). Dordrecht: Kluwer.Google Scholar
  33. Collier, J. D. (1999). Autonomy in anticipatory systems: significance for functionality, intentionality and meaning. In D. M. Dubois (Ed.), Computing anticipatory systems, CASYS’98 - Second International Conference (pp. 75-81). American Institute of Physics, Woodbury, New York, AIP Conference Proceedings 465.Google Scholar
  34. Collier, J. D. (2000). Autonomy and process closure as the basis for functionality. In L. R. Jerry & Chandler and Gertrudis van de Vijver (Eds.), Closure: Emergent Organizations and their Dynamics (vol. 901, pp. 280–291). Annals of the New York Academy of Science.Google Scholar
  35. Collier, J. D. (2003). Hierarchical dynamical information systems with a focus on biology. Entropy, 5, 100–124.CrossRefGoogle Scholar
  36. Collier, J. (2007). Simulating autonomous anticipation: the importance of Dubois’ conjecture. BioSystems, 91, 346–354.PubMedCrossRefGoogle Scholar
  37. Collier, J. (2008). Information in biological systems. In P. Adriaans & J. van Benthem (Eds.), Handbook of philosophy of science, volume 8: Philosophy of information, Chapter 5f (pp. 763–787). Dordrecht, North-Holland.Google Scholar
  38. Collier, J., & Muller, S. (1998). The dynamical basis of emergence in natural hierarchies. ECHO III Conference, Acta Polytechnica Scandinavica, MA91. In G. Farre & T. Oksala (Eds.), Emergence, complexity, hierarchy and organization. Finish Academy ofTechnology.Google Scholar
  39. Collier, J. D., & Hooker, C. A. (1999). Complexly organized dynamical systems. Open Systems and Information Dynamics, 6, 241–302.CrossRefGoogle Scholar
  40. Cummins, R. (1983). The nature of psychological explanation. Cambridge: MIT/Bradford.Google Scholar
  41. Davies, P. (2010). Universe from bit. In P. Davies & N. H. Gregersen (Eds.), Information and the nature of reality: From physics to metaphysics (pp. 65–91). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. El-Hani, C. N. (ed) (2008). Emergence and downward determination. Cybernetics And Human Knowing, 15(3–4).Google Scholar
  43. El-Hani, C. N., & Emmeche, C. (2000). On some theoretical grounds for an organism-centered biology: Property emergence, supervenience, and downward causation. Theory in Biosciences, 119, 234–275.CrossRefGoogle Scholar
  44. El-Hani, C. N., Arnellos, A., Queiroz, J. (2007). Modeling a semiotic process in the immune system: Signal transduction in B-cell activation. In Triple-C Cognition, Communication, Cooperation (Vol. 5, No. 2, pp. 24–36).Google Scholar
  45. El-Hani, C. N., Queiroz, J., & Emmeche, C. (2006). A semiotic analysis of the genetic information system. Semiotica, 160(1/4), 1–68.CrossRefGoogle Scholar
  46. El-Hani, C. N., Queiroz, J., & Emmeche, C. (2009). Genes, information, and semiosis. Tartu: Tartu University Press, Tartu Semiotics Library.Google Scholar
  47. Emmeche, C. (1989). Det biologiske informationsbegreb. PhD thesis. Department of Biological Chemistry. Institute of Molecular Biology. University of Copenhagen (Denmark).Google Scholar
  48. Emmeche, C., & Hoffmeyer, J. (1991). From language to nature - the semiotic metaphor in biology. Semiotica, 84(1/2), 1–42.CrossRefGoogle Scholar
  49. Emmeche, C. (1999). The Sarkar challenge to biosemiotics: is there any information in a cell? Semiotica, 127–1(4), 27–293.Google Scholar
  50. Emmeche, C., Køppe, S., & Stjernfelt, F. (2000). Levels, emergence and three versions of downward causation. In P. B. Andersen, C. Emmeche, N. O. Finnemann, & P. V. Christiansen (Eds.), Downward causation: Minds, bodies and matter (pp. 13–34). Aarhus: Aarhus University Press.Google Scholar
  51. Foss, J. (1994). On the evolution of intentionality as seen from the intentional stance. Inquiry, 37, 287–310.CrossRefGoogle Scholar
  52. Gatlin, L. L. (1972). Information theory and the living system. New York: Columbia University Press.Google Scholar
  53. Giorgi, F., Bruni, L. E., & Maggio, R. (2010). Receptor oligomerization as a process modulating cellular semiotics. Biosemiotics, 3, 157–176.CrossRefGoogle Scholar
  54. Godfrey-Smith, P. (2000). Information, arbitrariness, and selection: comments on Maynard Smith. Philosophy of Science, 67(2), 202–207.CrossRefGoogle Scholar
  55. Goodridge, H. S., & Harnett, M. M. (2005). Introduction to immune cell signaling. Parasitology, 130, S3–S9.PubMedCrossRefGoogle Scholar
  56. Griffiths, P. E. (2001). Genetic information: a metaphor in search of a theory. Philosophy of Science, 68(3), 394–403.CrossRefGoogle Scholar
  57. Griffiths, P. E., & Gray, R. D. (1994). Developmental systems theory and evolutionary explanation. Journal of Philosophy, 91, 277–304.CrossRefGoogle Scholar
  58. Hoffmeyer, J. (1998). Surfaces inside surfaces. On the origin of agency and life. Cybernetics and Human Knowing, 5, 33–42.Google Scholar
  59. Hoffmeyer, J. (2001). Life and reference. In L. M. Rocha (Ed.), The physics and evolution of symbols and codes. Reflections on the work of Howard Pattee - Special Issue of BioSystems, 60, 123–130.Google Scholar
  60. Holzmüller, W. (1984). Information in biological systems: The role of macromolecules, translated by Manfred Hecker. Cambridge: Cambridge University Press.Google Scholar
  61. Jablonka, E. (2002). Information: its interpretation, its inheritance, and its sharing. Philosophy of Science, 69, 578–605.CrossRefGoogle Scholar
  62. Jablonka, E., & Szathmáry, E. (1995). The evolution of information storage and heredity. Trends in Ecology and Evolution, 10, 206–211.PubMedCrossRefGoogle Scholar
  63. Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge: MIT Press.Google Scholar
  64. Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 1–7.Google Scholar
  65. Küppers, B.-O. (1990). Information and the origin of life. Cambridge: MIT Press.Google Scholar
  66. Landsberg, P. T. (1984). Can entropy and ‘order’ increase together? Physics Letters, 102A, 171–173.Google Scholar
  67. Layzer, D. (1990). Cosmogenesis: The growth of order in the universe. New York: Oxford University Press.Google Scholar
  68. Matthen, M., & Levy, E. (1984). Teleology, error, and the human immune system. Journal of Philosophy, 81(7), 351–372.CrossRefGoogle Scholar
  69. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition. Dordrecht: Reidel.CrossRefGoogle Scholar
  70. Maynard Smith, J. (2000). The concept of information in biology. Philosophy of Science, 67(2), 177–194.CrossRefGoogle Scholar
  71. Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: W. H. Freeman.Google Scholar
  72. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.CrossRefGoogle Scholar
  73. Moreno, A., & Barandiaran, X. (2004). A naturalized account of the inside-outside dichotomy. Philosophica, 73, 11–26.Google Scholar
  74. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. British Journal for the Philosophy of Science, 60(4), 813–841.CrossRefGoogle Scholar
  75. Nunes-Neto, N. F., Arnellos, A., & El-Hani, C. N. (2011). Etiological and Organizational Perspectives on Function, International Society for the History, Philosophy and Social Studies of Biology (ISHPSSB 2011). USA: Utah.Google Scholar
  76. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (1996). Niche construction. Amercian Naturalist, 147, 641–648.CrossRefGoogle Scholar
  77. Oyama, S. (2000). The ontogeny of information: developmental systems and evolution, 2nd Ed. Cambridge: Cambridge University Press, 1st Ed. 1985.Google Scholar
  78. Peirce, C. S. (1931–1935). The Collected Papers of Charles Sanders Peirce. Electronic edition reproducing Vols. I–VI [C. Hartshorne & P. Weiss (eds.), Cambridge-MA: Harvard University Press, 1931–1935], Vols. VII–VIII [A. W. Burks (ed.), same publisher, 1958]. Charlottesville: Intelex Corporation. [Here referred as CP, followed by volume and paragraph number.]Google Scholar
  79. Pierce, S. K. (2002). Lipid rafts and B-cell activation. Nature Reviews Immunology, 2, 96–105.PubMedCrossRefGoogle Scholar
  80. Reth, M., & Wienands, J. (1997). Initiation and processing of signals from the B cell antigen receptor. Annual Review of Immunology, 15, 453–479.PubMedCrossRefGoogle Scholar
  81. Ruiz-Mirazo, K., & Moreno, A. (2000). Searching for the roots of autonomy: the natural and artificial paradigms revisited. Communication and Cognition – Artificial Intelligence, 17, 209–228.Google Scholar
  82. Ruiz-Mirazo, K., & Moreno, A. (2004). Basic autonomy as a fundamental step in the synthesis of life. Artificial Life, 10, 235–259.PubMedCrossRefGoogle Scholar
  83. Ruiz-Mirazo, K., Pereto, J., & Moreno, A. (2004). A universal definition of life: autonomy and open-ended evolution. Origins of Lifeand Evolution of the Biosphere, 34, 323–346.CrossRefGoogle Scholar
  84. Sarkar, S. (1996). Biological information: A skeptical look at some central dogmas of molecular biology. In S. Sarkar (Ed.), The philosophy and history of molecular biology: New perspectives (pp. 187–231). Dordrecht: Kluwer.Google Scholar
  85. Sarkar, S. (2000). Information in genetics and developmental biology: comments on Maynard Smith, Philosophy of Science 67(2), 208–213.Google Scholar
  86. Savan, D. (1986). Response to T. L. Short. Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, Summer, XXII (2), 125–143.Google Scholar
  87. Schrödinger, I. (1944). What is life? Reprinted in what is life? And mind and matter. Cambridge: Cambridge University Press.Google Scholar
  88. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423. 623–656, July & October, 1948.Google Scholar
  89. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
  90. Sterelny, K. (2000). The ‘genetic program’ program: a commentary on Maynard Smith on information in biology. Philosophy of Science, 67(2), 195–201.CrossRefGoogle Scholar
  91. Vehkavaara, T. (2003b) Natural self-interest, interactive representation, and the emergence of objects and Umwelt: an outline of basic semiotic concepts for biosemiotics. Sign Systems Studies, 31(2)/2003, 547–587.Google Scholar
  92. Vieira, F. S., & El-Hani, C. N. (2008). Emergence and downward determination in the natural sciences. Cybernetics & Human Knowing, 15(3–4), 101–134.Google Scholar
  93. Wheeler, J. A., & Ford, K. (1998). It from bit. In Geons and black holes: A life in physics. New York: W.W. Norton.Google Scholar
  94. Wright, L. (1973). Functions. Philosophical Review, 82, 139–168.CrossRefGoogle Scholar
  95. Winnie, J. A. (2000). Information and structure in molecular biology: comments on Maynard Smith. Philosophy of Science, 67(3), 517–526.CrossRefGoogle Scholar
  96. Zeilinger, A. (2004). Why the quantum? It from bit? A participatory universe? Three far-reaching, visionary questions from John Archibald Wheeler and how they inspired a quantum experimentalist. In J. D. Barrow, P. C. W. Davies, & C. L. Harper (Eds.), Science and the ultimate reality: Quantum theory, cosmology and complexity (pp. 201–220). Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Argyris Arnellos
    • 1
  • Luis Emilio Bruni
    • 2
  • Charbel Niño El-Hani
    • 3
  • John Collier
    • 4
  1. 1.IAS-Research Centre for Life, Mind, and Society - Department of Logic and Philosophy of ScienceUniversity of the Basque CountryDonostia - San SebastiánSpain
  2. 2.Department of Architecture, Design and Media TechnologyAalborg UniversityCopenhagenDenmark
  3. 3.Institute of BiologyFederal University of BahiaBahiaBrazil
  4. 4.School of Religion, Philosophy and ClassicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations