, Volume 4, Issue 1, pp 5–24 | Cite as

Introducing Dynamics into the Field of Biosemiotics

A Formal Account with Examples from Language and Immunology
  • Joachim De Beule
  • Eivind Hovig
  • Mikael Benson
Original Paper


Coding plays a universal and pervasive role in biological organization, in forms such as genetic coding (DNA to protein translation), RNA processing, gene regulation, protein modification, cell signalling, immune responses, epigenetic development and natural language. Nevertheless, the ways and means by which organic codes are formed and used are still poorly understood. A formal model is presented in this paper to investigate the emergence of conventional codes among code users. The relationship between the formation and the usage of codes is discussed, and a biological mechanism involving coding is identified in the context of the immune system.


Semiotic dynamics Artificial chemistry Mathematical modeling Organic codes 



The authors wish to thank the editor, Marcello Barbieri, as well as all of the anonymous reviewers for their invaluable comments and help to improve this document. The research reported in this paper was funded by the EU FP6 NEST/PATH project ComplexDis.


  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walters, P. (2002). Molecular Biology of the Cell (4th ed.). New York: Garland science.Google Scholar
  2. Barbieri, M. (2008). Biosemiotics: a new understanding of life. Naturwissenschaften, 95(7), 577–599.PubMedCrossRefGoogle Scholar
  3. Baronchelli, A., Loreto, V., & Steels, L. (2008). In-depth analysis of the naming game dynamics: the homogeneous mixing case. International Journal of Modern Physics C, 19(5), 785–812.CrossRefGoogle Scholar
  4. Benson, M., Adner, M., & Cardell, L. O. (2001). Cytokines and cytokine receptors in allergic rhinitis: how do they relate to the th2 hypothesis in allergy? Clinical and Experimental Allergy, 31, 361–367.PubMedCrossRefGoogle Scholar
  5. Benson, M., Carlsson, L., Guillot, G., Jernas, M., Langston, M. A., Rudemo, M., et al. (2006). A network-based analysis of allergen-challenged cd4+ t cells from patients with allergic rhinitis. Genes and Immunity, 7, 514–521.PubMedCrossRefGoogle Scholar
  6. Burnet, F. M. (1959). The clonal selection theory of acquired immunity. Cambridge: Cambridge University Press.Google Scholar
  7. Catutto, C., Loreto, V., & Pietronero, L. (2007). Semiotic dynamics and collaborative tagging. Proceedings of the National Academy of Sciences, 104(5), 1461–1464.CrossRefGoogle Scholar
  8. Chomsky, N. (1977). Language and responsibility. New York: The New Press.Google Scholar
  9. Conradi, C., Saez-Rodriguez, J., Gilles, E. D., & Raisch, J. (2006). Chemical reaction network theory: A tool for systems biology. In Proceedings of the 5th MATHMOD: 5th Vienna Symposium on Mathematical Modelling.Google Scholar
  10. Craciun, G., & Feinberg, M. (2006). Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models. Systems Biology, 153(4), 179–186.PubMedGoogle Scholar
  11. Croft, W. (2005). Logical and typological arguments for radical construction grammar. In J. O. Ostman & M. Fried (Eds.), Construction grammars: Cognitive grounding and theoretical extensions. Amsterdam: Benjamin.Google Scholar
  12. De Beule, J. (2008). The emergence of compositionality, hierarchy and recursion in peer-to-peer interactions. In A. D. M. Smith, K. Smith, & R. Ferrer i Cancho (Eds.), Proceedings of the 7th International Conference on the Evolution of Language (pp. 75–82). World Scientific.Google Scholar
  13. De Beule, J. (2009). A chemical model of the naming game. In Proceedings of the 10th European Conference on Artificial Life. LNCS. Springer.Google Scholar
  14. De Beule, J., & Steels, L. (2005). Hierarchy in fluid construction grammar. In U. Furbach (Ed.), Proceedings of KI-2005, volume 3698 of Lecture Notes in AI (pp. 1–15). Berlin: Springer-Verlag.Google Scholar
  15. De Beule, J., De Vylder, B., & Belpaemem, T. (2006). A cross-situational learning algorithm for damping homonymy in the guessing game. In L. M. Rocha, et al. (Eds.), Artificial Life X (pp. 466–472). MIT.Google Scholar
  16. De Vylder, B. (2006). Coordinated communication, a dynamical systems perspective. In Proceedings of the European Conference on Complex Systems.Google Scholar
  17. De Vylder, B. (2007). The evolution of conventions in multi-agent systems. PhD thesis, VUB Artificial Intelligence Lab.Google Scholar
  18. Di Giulio, M. (2000). The late stage of genetic code structuring took place at a high temperature. Gene, 261, 189195.Google Scholar
  19. Dittrich, P., Ziegler, J., & Banzhaf, W. (2001). Artificial chemistries—a review. Artificial Life, 7, 225–275.PubMedCrossRefGoogle Scholar
  20. Eigen, M. (1971). Selforganization of matter and the evolution of biological macro-molecules. Naturwissenschaften, 58, 465523.CrossRefGoogle Scholar
  21. Flajnik, M. F., & Kasahara, M. (2010). Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews. Genetics, 11, 47–59.PubMedCrossRefGoogle Scholar
  22. Georgescu, C., Longabaugh, W. J., Scripture-Adams, D. D., David-Fung, E. S., Yui, M. A., Zarnegar, M. A., et al. (2008). A gene regulatory network armature for T lymphocyte specification. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20100–20105.PubMedCrossRefGoogle Scholar
  23. Goldberg, A. (1995). Constructions: A Construction grammar approach to argument structure. Chicago: University of Chicago Press.Google Scholar
  24. Gorlich, D., & Dittrich, P. (2009). Identifying molecular organic codes in reaction networks. In Proceedings of the 10th European Conference on Artificial Life. LNCS. Springer.Google Scholar
  25. Gunawardena, J. (2003). Chemical reaction network theory for in-silico biologists. Available from
  26. Gutfraind, A., & Kempf, A. (2008). Error-reducing structure of the genetic code indicates code origin in non-thermophile organisms. Origins of Life and Evolution of the Biosphere, 38, 7585.Google Scholar
  27. Jerne, N. K. (1955). The natural selection theory of antibody formation. Proceedings of the National Academy of Sciences of the United States of America, 41, 849–857.PubMedCrossRefGoogle Scholar
  28. Jerne, N. K. (1985). The generative grammar of the immune system. Bioscience Reports, 5(6), 439–451. Nobel Lecture Note.PubMedCrossRefGoogle Scholar
  29. Jestin, A. L., & Kempf, A. (2009). Optimization models and the structure of the genetic code. Journal of Molecular Evolution, 69, 452457.CrossRefGoogle Scholar
  30. Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination and reason. University of Chicago.Google Scholar
  31. Kruizinga, R. C., Bestebroer, J., Berghuis, P., de Haas, C. J., Links, T. P., de Vries, E. G., et al. (2009). Role of chemokines and their receptors in cancer. Current Pharmaceutical Design, 15, 3396–3416.PubMedCrossRefGoogle Scholar
  32. Kuppers, B. O. (1990). Information and the origin of life. Cambridge: MIT.Google Scholar
  33. Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.Google Scholar
  34. Lu, T. X., Munitz, A., & Rothenberg, M. E. (2009). Microrna-21 is up-regulated in allergic airway inflammation and regulates il-12p35 expression. Journal of Immunology, 182, 4994–5000.CrossRefGoogle Scholar
  35. Maynard-Smith, J., & Szathmary, E. (1995). The major transitions in evolution. Morgan-Freeman.Google Scholar
  36. Mendoza, L. (2006). A network model for the control of the differentiation process in Th cells. Biosystems, 84(2), 101–114.PubMedCrossRefGoogle Scholar
  37. Mobini, R., Andersson, B. A., Erjeflt, J., Hahn-Zoric, M., Langston, M. A., Perkins, A. D., et al. (2009). Module-based analytical strategy to identify novel disease-associated genes shows an inhibitory role for interleukin 7 receptor 23 in allergic inflammation. BMC Syst Biol, 3–19.Google Scholar
  38. Smith, K., Kirby, S., & Brighton, H. (2003). Iterated learning: a framework for the emergence of language. Artificial Life, 9(4), 3710386.CrossRefGoogle Scholar
  39. Smith, K., Smith, A., Blythe, R., & Vogt, P. (2006). Cross-situational learning, a mathematical approach. In P. Vogt, Y. Sugita, E. Tuci, & C. Nehaniv (Eds.), Proceedings of the Emergence and Evolution of Linguistic Communication. Springer.Google Scholar
  40. Smits, H. H., van Rietschoten, J. G., Hilkens, C. M., Sayilir, R., Stiekema, F., Kapsenberg, M. L., et al. (2001). Il-12-induced reversal of human th2 cells is accompanied by full restoration of il-12 responsiveness and loss of gata-3 expression. European Journal of Immunology, 31, 10551065.CrossRefGoogle Scholar
  41. Steels, L. (2000). Language as a complex adaptive system. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, et al. (Eds.), Proceedings of Parallel Problem Solving from Nature VI, Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  42. Steels, L., & De Beule, J. (2006). A (very) brief introduction to fluid construction grammar. In Third International Workshop on Scalable Natural Language Understanding. New York City.Google Scholar
  43. Steels, L., & Kaplan, F. (1999). Collective learning and semiotic dynamics. In D. Floreane, J.-D. Nicoud, & F. Mondada (Eds.), Advances in Artificial Life, Proceedings of ECAL’99, volume 1674 of Lecture Notes in Computer Science.Google Scholar
  44. Steels, L., & Kaplan, F. (1999b). Bootstrapping grounded word semantics. In T. Briscoe (Ed.), Linguistic evolution through language acquisition: formal and computational models (pp. 53–73). Cambridge: Cambridge University Press.Google Scholar
  45. Steels, L., & Szathmary, E. (2008). Replicator dynamics of language processing. In A. D. M. Smith, K. Smith, & R. Ferrer i Cancho (Eds.), The Evolution of Language: Proceedings of the 7th International Conference. Singapore: World Scientific.Google Scholar
  46. Steels, L., & Wellens, P. (2006). How grammar emerges to dampen combinatorial search in parsing. In P. Vogt, et al. (Eds.), Symbol Grounding and Beyond: Proceedings of the Third International Workshop on the Emergence and Evolution of Linguistic Communication (pp. 76–88). Springer.Google Scholar
  47. Szathmary, E. (2006). The origin of replicators and reproducers. Philosophical Transactions of the Royal Society of London. B, 361(1474), 1761–1776.CrossRefGoogle Scholar
  48. Takeuchi, N. (2010). Evolutionary dynamics of RNA-like replicators—a bioinformatic approach to the origin of life. PhD thesis, Utrecht University.Google Scholar
  49. The Five Graces Group (2008). Language is a complex adaptive system. DOI: SFI-WP 08-12-047, SFI Working Papers.Google Scholar
  50. Vincent, M. E., Liu, W., Haney, E. B., & Ismagilov, R. F. (2010). Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chemical Society Reviews, 39, 974–984. doi: 10.1039/b917851a.
  51. Viola, A., Molon, B., & Contento, R. L. (2008). Chemokines: coded messages for T-cell missions. Frontiers in Bioscience, 13, 6341–6353.PubMedCrossRefGoogle Scholar
  52. Wang, H., Barrenas, F., Bruhn, S., Mobini, R., & Benson, M. (2009). Increased ifn-gamma activity in seasonal allergic rhinitis is decreased by treatment with corticosteroids. Journal of Allergy and Clinical Immunology, 124, 1360–1362.PubMedCrossRefGoogle Scholar
  53. Yates, A., Callarda, R., & Stark, J. (2004). Combining cytokine signalling with t-bet and gata-3 regulation in th1 and th2 differentiation: a model for cellular decission making. Journal of Theoretical Biology, 231, 181–196.PubMedCrossRefGoogle Scholar
  54. Zhou, W., & Ouyang, M. (2003). The function of gata-3 in Th1 and Th2 differentiation. Immunologic Research, 28, 2537.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joachim De Beule
    • 1
    • 2
  • Eivind Hovig
    • 3
    • 4
  • Mikael Benson
    • 5
  1. 1.Artificial Intelligence LabVrije Universiteit BrusselBrusselBelgium
  2. 2.Iridia labUniversite Libre de BruxellesBrusselBelgium
  3. 3.Department of Tumor Biology, Institute for Cancer ResearchThe Norwegian Radium Hospital MontebelloOsloNorway
  4. 4.Department of InformaticsThe University of OsloOsloNorway
  5. 5.Unit for Clinical Systems BiologyQueen Silvia Children’s Hospital GothenburgGothenburgSweden

Personalised recommendations