, Volume 1, Issue 2, pp 191–206 | Cite as

The Viral Origins of Telomeres and Telomerases and their Important Role in Eukaryogenesis and Genome Maintenance

  • Guenther WitzanyEmail author


Whereas telomeres protect terminal ends of linear chromosomes, telomerases identify natural chromosome ends, which differ from broken DNA and replicate telomeres. Although telomeres play a crucial role in the linear chromosome organization of eukaryotic cells, their molecular syntax most probably descended from an ancient retroviral competence. This indicates an early retroviral colonization of large double-stranded DNA viruses, which are putative ancestors of the eukaryotic nucleus. This contribution demonstrates an advantage of the biosemiotic approach towards our evolutionary understanding of telomeres, telomerases, other reverse transcriptases and mobile elements. Their role in genetic/genomic content organization and maintenance is no longer viewed as an object of randomly derived alterations (mutations) but as a highly sophisticated hierarchy of regulatory networks organized and coordinated by natural genome-editing competences of viruses.


Telomeres Telomerases Eukaryotic nucleus Persistent viruses 



This work was first presented at the Cold Spring Harbor Laboratory Meeting on ‘Telomeres and Telomerases’, 3–6 May 2007. I would like to thank Cold Spring Harbor Laboratory for the invitation and participation support.


  1. Ast, G. (2005). The alternative genome. Scientific American, 292, 58–65.CrossRefGoogle Scholar
  2. Bapteste, E., Charlebois, R. L., MacLeod, D., & Brochier, C. (2005). The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biology, 6, R85.PubMedGoogle Scholar
  3. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedGoogle Scholar
  4. Batzer, M. A., & Deininger, D. L. (2002). ALU repeats and human genomic diversity. Nature Reviews Genetics, 3, 370–380.PubMedGoogle Scholar
  5. Bell, P. J. L. (2001). Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus. Journal of Molecular Evolution, 53, 251–256.PubMedGoogle Scholar
  6. Bell, P. J. L. (2006). Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. Journal of Theoretical Biology, 243(1), 54–63. doi: 10.1016/j.jtbi.2006.05.015.PubMedGoogle Scholar
  7. Bird, C. P., Stranger, B. E., & Dermitzakis, E. T. (2006). Functional variation and evolution of non-coding DNA. Current Opinion in Genetics & Development, 16, 559–564.Google Scholar
  8. Blasco, M. (2007). The epigenetic regulation of mammalian telomeres. Nature Reviews, 8, 299–309.PubMedGoogle Scholar
  9. Boeke, J. D. (2003). The unusual phylogenetic distribution of retrotransposons: a hypothesis. Genome Research, 13, 1975–1983.PubMedGoogle Scholar
  10. Brosius, J. (1999). RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene, 238, 115–134.PubMedGoogle Scholar
  11. Brosius, J. (2003). The contribution of RNAs and retroposition to evolutionary novelties. Genetica, 118, 99–115.PubMedGoogle Scholar
  12. Chaconas, G. (2005). Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Molecular Microbiology, 58, 625–635.PubMedGoogle Scholar
  13. Coffin, J. M., Hughes, A. H., & Varmus, H. E. (1997). Retroviruses. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  14. Cottingham, F. R., & Hoyt, M. A. (1997). Mitotic spindle positioning in saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. Journal of Cell Biology, 138, 1041–1053.PubMedGoogle Scholar
  15. Couzin, J. (2002). Small RNAs make big splash. Science, 298, 2296–2297.PubMedGoogle Scholar
  16. Cullen, B. R. (2006). Viruses and microRNAs. Nature Genetics, 38, S25–S30.PubMedGoogle Scholar
  17. Curcio, M. J., & Belfort, M. (2007). The beginning of the end: links between ancient retroelements and modern telomerases. Proceedings of the National Academy of Sciences of the United States of America, 104, 9107–9108.PubMedGoogle Scholar
  18. Darzacq, X., Jady, B. E., Verheggen, C., Kiss, A. M., Bertrand, E., & Kiss, T. (2002). Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO Journal, 21, 2746–2756.PubMedGoogle Scholar
  19. Daubin, V., & Ochman, H. (2004). Start-up entities in the origin of new genes. Current Opinion in Genetics & Development, 14, 616–619.Google Scholar
  20. Doench, J. G., Christian, P., Petersen, C. P., & Sharp, P. A. (2003). siRNAs can function as miRNAs. Genes & Development, 17, 438–442.Google Scholar
  21. Du, S., & Traktman, P. (1996). Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. Proceedings of the National Academy of Sciences of the United States of America, 93, 9693–9698.PubMedGoogle Scholar
  22. Eickbush, T. (1999). Mobile introns: retrohoming by complete reverse splicing. Current Biology, 9, 11–14.Google Scholar
  23. Eickbush, T. H. (1997). Telomerase and retrotransposons: which came first. Science, 277, 911–912.PubMedGoogle Scholar
  24. Eickbush, T. H., & Eickbush, D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics, 175, 477–485.PubMedGoogle Scholar
  25. Eigen, M., & Winkler, R. (1975). Das spiel—naturgesetze steuern den zufall. München: Piper.Google Scholar
  26. Fajkus, J., Sykorova, E., & Leitch, A. R. (2005). Telomeres in evolution and evolution of telomeres. Chromosome Research, 13, 469–479.PubMedGoogle Scholar
  27. Filipowicz, W. (2000). Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proceedings of the National Academy of Sciences of the United States of America, 97, 14035–14037.PubMedGoogle Scholar
  28. Fire, A. (2005). Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi. Quarterly Reviews of Biophysics, 38, 303–309.PubMedGoogle Scholar
  29. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedGoogle Scholar
  30. Flavell, A. J. (1995). Retroelements, reverse transcriptase and evolution. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 110, 3–15.Google Scholar
  31. Forterre, P. (2001). Genomics and early cellular evolution. The origin of the DNA world. Comptes rendus de l’Académie des sciences. Série 3, Sciences de la vie, 324, 1067–1076.Google Scholar
  32. Forterre, P. (2002). The origin of DNA genomes and DNA replication proteins. Current Opinion in Microbiology, 5, 525–532.PubMedGoogle Scholar
  33. Forterre, P. (2005). The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie, 87, 793–803.PubMedGoogle Scholar
  34. Forterre, P. (2006a). The origin of viruses and their possible roles in major evolutionary transitions. Virus Research, 117, 5–16.PubMedGoogle Scholar
  35. Forterre, P. (2006b). Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proceedings of the National Academy of Sciences of the United States of America, 103, 3669–3674.PubMedGoogle Scholar
  36. Frost, L. S., Laplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology, 3, 722–732.PubMedGoogle Scholar
  37. Gabus, C., Ivanyi-Nagy, R., Depollier, J., Bucheton, A., Pelisson, A., & Darlix, J. L. (2006). Characterization of a nucleocapsid-like region and of two distinct primer tRNA binding sites in the endogenous retrovirus Gypsy. Nucleic Acids Research, 34, 5764–5777.PubMedGoogle Scholar
  38. Gao, X., Havecker, E. R., Baranov, P. V., Atkins, J. F., & Voytas, D. F. (2003). Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA, 9, 1422–1430.PubMedGoogle Scholar
  39. Gerdes, K. (2000). Toxin–antitoxin modules may regulate synthesis of macromolecules during nutritional stress. Journal of Bacteriology, 182, 561–572.PubMedGoogle Scholar
  40. Gorinsek, B., Gubensek, F., & Kordis, D. (2004). Evolutionary genomics of chromovirus in eukaryotes. Molecular Biology and Evolution, 21, 781–798.PubMedGoogle Scholar
  41. Grewal, S. I. S., & Elgin, S. C. R. (2007). Transcription and RNA interference in the formation of heterochromatin. Nature, 447, 399–406.PubMedGoogle Scholar
  42. Haoudi, A., & Mason, J. M. (2000). Reverse transcriptase can stabilize or destabilize the genome. Genome, 43, 949–956.PubMedGoogle Scholar
  43. Ijdo, J. W., Baldini, A., Ward, D. C., Reeders, S. T., & Wells, R. A. (1991). Origin of human chromosome 2: an ancestral telomere–telomere fusion. Proceedings of the National Academy of Sciences of the United States of America, 88, 9051–9055.PubMedGoogle Scholar
  44. Jady, B. E., Bertrand, E., & Kiss, T. (2004). Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. The Journal of Cell Biology, 164, 647–652.PubMedGoogle Scholar
  45. Kiss, A. M., Jady, B. E., Darzaq, X., Verheggen, C., Bertrand, E., & Kiss, T. (2002). A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Research, 30, 4643–4649.PubMedGoogle Scholar
  46. Koonin, E. V. (2006). Temporal order of evolution of DNA replication system inferred by comparison of cellular and viral DNA polymerases. Biology Direct, 1, 39. doi: 10.1186/1745-6150-1-39.PubMedGoogle Scholar
  47. Koonin, E. V., Senkevich, T. G., & Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biology Direct, 1, 29.PubMedGoogle Scholar
  48. Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., Schwimbersky, R., et al. (2007). Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing. Nucleic Acids Research, 35(22), 7514–7526. doi: 10.1093/nar/gkm919.PubMedGoogle Scholar
  49. Leipe, D. D., Aravind, L., & Koonin, E. V. (1999). Did DNA replication evolve twice independently. Nucleic Acids Research, 27, 3389–3401.PubMedGoogle Scholar
  50. Maita, N., Anzai, T., Aoyagi, H., Mizuno, H., & Fujiwara, H. (2004). Crystal structure of the endonuclease domain encoded by the telomere-specific long interspersed nuclear element, TRAS1. Journal of Biological Chemistry, 279, 41067–41076.PubMedGoogle Scholar
  51. Maizels, A., & Weiner, A. M. (1993). The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication. In R. F. Gesteland, & J. F. Atkins (Eds.), The RNA world (pp. 577–602, 2nd ed.). Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.Google Scholar
  52. Maizels, N., Weiner, A. M., Yue, D., & Shi, P. (1999). New evidence for the genomic tag hypothesis: archaeal CCA-adding enzymes and tRNA substrates. Biological Bulletin, 196, 331–334.PubMedGoogle Scholar
  53. Makarova, K. S., Grishin, N. V., & Koonin, E. V. (2006). The HicAB cassette, a putative novel, RNA-targeting toxin–antitoxin system in archaea and bacteria. Bioinformatics, 22, 2581–2584.PubMedGoogle Scholar
  54. Martin, W. (2005). Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Current Opinion in Microbiology, 8, 630–637.PubMedGoogle Scholar
  55. Matera, A. G. (2006). Drosophila Cajal bodies: accessories not included. The Journal of Cell Biology, 172, 791–793.PubMedGoogle Scholar
  56. Matera, A. G., Terns, R. M., & Terns, M. P. (2007). Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology, 8, 209–220.PubMedGoogle Scholar
  57. Mattick, J. S. (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO Reports, 2, 986–991.PubMedGoogle Scholar
  58. Mattick, J. S. (2006). The underworld of RNA. Nature Genetics, 38, 393.Google Scholar
  59. Mattick, J. S. (2007). A new paradigm for developmental biology. Journal of Experimental Biology, 210, 1526–1547.PubMedGoogle Scholar
  60. Mesnard, J. M., & Lebeurier, G. (1991). How do viral reverse transcriptases recognize their RNA genome. FEBS Letters, 287, 1–4.PubMedGoogle Scholar
  61. Nakamura, T. M., & Cech, T. R. (1998). Reversing time: origin of telomerase. Cell, 92, 587–590.PubMedGoogle Scholar
  62. Nosek, J., Kosa, P., & Tomaska, L. (2006). On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays, 28, 182–190.PubMedGoogle Scholar
  63. Pandey, D. P., & Gerdes, K. (2005). Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.PubMedGoogle Scholar
  64. Platani, M., Goldberg, I., Lamond, A. I., & Swedlow, J. R. (2002). Cajal body dynamics and association with chromatin are ATP dependent. Nature Cell Biology, 4, 502–508.PubMedGoogle Scholar
  65. Rao, A. L. N., Dreher, T. W., Marsh, L. E., & Hall, T. C. (1989). Telomeric function of the tRNA-like structure of brome mosaic virus RNA. Proceedings of the National Academy of Sciences of the United States of America, 86, 5335–5339.PubMedGoogle Scholar
  66. Rashkova, S., Karam, S. E., Kellum, R., & Pardue, M. L. (2002). Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. The Journal of Cell Biology, 159, 397–402.PubMedGoogle Scholar
  67. Rodríguez-Alvarado, G., & Roossinck, M. J. (1997). Structural analysis of a necrogenic strain of cucumber mosaic cucumovirus satellite RNA in planta. Virology, 236, 155–166.PubMedGoogle Scholar
  68. Rogozin, I. B., Sverdlov, A. V., Babenko, V. N., & Koonin, E. V. (2005). Analysis of evolution of exon–intron structure of eukaryotic genes. Briefings in Bioinformatics, 6, 118–134.PubMedGoogle Scholar
  69. Ryan, F. P. (2004). Human endogenous retroviruses in health and disease: a symbiotic perspective. Journal of the Royal Society of Medicine, 97, 560–565.PubMedGoogle Scholar
  70. Ryan, F. P. (2006). Genomic creativity and natural selection: a modern synthesis. Biological Journal of the Linnean Society, 88, 655–672.Google Scholar
  71. Ryan, F. P. (2007). Viruses as symbionts. Symbiosis, 44, 11–21.Google Scholar
  72. Savitsky, M., Kwon, D., Shpiz, S., Georgiev, P., Kalmykova, A., & Gvozdev, V. (2006). Telomere maintenance is under control of the RNAi-based mechanism in the Drosophila germline. Genes & Development, 20, 345–354.Google Scholar
  73. Sfakianos, J. N., & Hunter, E. (2003). M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic, 4, 671–680.PubMedGoogle Scholar
  74. Shabalina, S. A., & Spiridonov, N. A. (2004). The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biology, 5, 105e.Google Scholar
  75. Shapiro, J. A. (2002). Genome organization and reorganization in evolution. Annals of the New York Academy of Sciences, 981, 111–134.PubMedGoogle Scholar
  76. Shapiro, J. A. (2006). Genome informatics: the role of DNA in cellular computations. Biological Theory, 1, 288–301.Google Scholar
  77. Shapiro, J. A., & Sternberg, R. (2005). Why repetitive DNA is essential to genome function. Biological Reviews, 80, 1–24.Google Scholar
  78. Slotkin, R. K., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 8, 272–285.PubMedGoogle Scholar
  79. Sternberg, R. (2002). On the roles of repetitive DNA elements in the context of a unified genomic–epigenetic system. Annals of the New York Academy of Sciences, 981, 154–188.Google Scholar
  80. Sternberg, R., & Shapiro, J. A. (2005). How repeated retroelements format genome function. Cytogenetic and Genome Research, 110, 108–116.Google Scholar
  81. St. Laurent, G., & Wahlestedt, C. (2007). Noncoding RNAs: couplers of analog and digital information in nervous system function. Trends in Neuroscience, 30(12), 612–621. doi: 10.1016/j.tins.2007.10.002.Google Scholar
  82. Sugiyama, T., Cam, H., Verdel, A., Moazed, D., & Grewal, S. I. S. (2005). RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proceedings of the National Academy of Sciences of the United States of America, 102, 151–157.Google Scholar
  83. Takemura, M. (2001). Poxviruses and the origin of the eukaryotic nucleus. Journal of Molecular Evolution, 52, 419–425.PubMedGoogle Scholar
  84. Tang, Y., Winkler, U., Fredd, E. O., Torrey, T. A., Kim, W., Li, H., et al. (1999). Cellular motor protein KIF-4 associates with retroviral gag. Journal of Virology, 73, 10508–10513.PubMedGoogle Scholar
  85. Temin, H. M. (1985). Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons and retrotranscripts. Molecular Biology and Evolution, 2, 455–468.PubMedGoogle Scholar
  86. Tomlinson, R. L., Ziegler, T. D., Supakorndej, T., Terns, R. M., & Terns, M. P. (2006). Cell cycle-regulated trafficking of human telomerase to telomeres. Molecular Biology of the Cell, 17, 955–965.PubMedGoogle Scholar
  87. Tourand, Y., Bankhead, T., Wilson, S. L., Putteet-Driver, A. D., Barbour, A. G., Byram, R., et al. (2006). Differential telomere processing by borrelia telomere resolvases in vitro but not in vivo. Journal of Bacteriology, 188, 7378–7386.PubMedGoogle Scholar
  88. Tran, E., Brown, J., & Maxwell, E. S. (2004). Evolutionary origins of the RNA-guided nucleotide modification complexes: from the primitive translation apparatus. Trends in Biochemical Sciences, 29, 343–350.PubMedGoogle Scholar
  89. Vale, R. (2003). The molecular motor toolbox for intracellular transport. Cell, 112, 467–480.PubMedGoogle Scholar
  90. Van Lent, J. W. M., & Schmitt-Keichinger, C. (2006). Viral movement proteins induce tubule formation in plant and insect cells. In F. Baluska, D. Volmann, & P. Barlow (Eds.), Cell–cell channels (pp. 1–13). New York: Springer.Google Scholar
  91. Vaughn, M. W., & Martienssen, R. (2005). It’s a small RNA world, after all. Science, 309, 1525–1526.PubMedGoogle Scholar
  92. Vetsigian, K., Woese, C., & Goldenfeld, N. (2006). Collective evolution and the genetic code. Proceedings of the National Academy of Sciences of the United States of America, 103, 10696–10701.PubMedGoogle Scholar
  93. Villarreal, L. P. (2005). Viruses and the evolution of life. Washington: ASM.Google Scholar
  94. Villasante, A., Abad, J. P., & Mendez-Lago, M. (2007). Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proceedings of the National Academy of Sciences of the United States of America, 104, 10542–10547.PubMedGoogle Scholar
  95. Volff, J. N. (2006). Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays, 28, 913–922.PubMedGoogle Scholar
  96. Weber, M. J. (2006). Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genetics, 2(12), e205 (December).PubMedGoogle Scholar
  97. Weiss, R. A. (2006). The discovery of endogenous retroviruses. Retrovirology, 3, 67. doi: 10.1186/1742-4690-3-67.PubMedGoogle Scholar
  98. Witzany, G. (2000). Life: the communicative structure. Norderstedt: Libri Books on Demand.Google Scholar
  99. Witzany, G. (2006). Natural genome-editing competences of viruses. Acta Biotheoretica, 54, 235–253.PubMedGoogle Scholar
  100. Witzany, G. (2007). The logos of the bios 2. Bio-communication. Helsinki: Umweb.Google Scholar
  101. Xiong, Y., & Eickbush, T. H. (1990). Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO Journal, 9, 3353–3362.PubMedGoogle Scholar
  102. Yang, J., Malik, H. S., & Eickbush, T. H. (1999). Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proceedings of the National Academy of Sciences of the United States of America, 96, 7847–7852.PubMedGoogle Scholar
  103. Zemann, A., Beckke, A., Kiefmann, M., Brosius, J., & Schmitz, J. (2006). Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Research, 34, 2676–2685.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Telos–Philosophische PraxisBürmoosAustria

Personalised recommendations