Advertisement

Geochemical characteristics of the Upper Cretaceous to Lower Eocene sedimentary rocks from the Pieniny Klippen Belt (Western Carpathians, Slovakia): implications for tectonic setting, paleoenvironment and paleoclimate

  • Marek Vd’ačnýEmail author
  • Jozef Madzin
  • Dušan Plašienka
Article
  • 20 Downloads

Abstract

This paper presents geochemical data on sedimentary rocks from the Upper Cretaceous to Lower Eocene formations of the Pieniny Klippen Belt (Western Carpathians, Slovakia). On the basis of geochemical analyses of 15 samples, the plate tectonic setting of sediment accumulation and paleodepositional environment were reconstructed, which may help to understand a part of evolution of this orographically remarkable zone. Four main rock groups were identified within the samples studied: fine- to medium-grained sandstones, siltstones or claystones, pebbly/sandy mudstones and shales. In the Al2O3*5-SiO2-CaO*2 ternary diagram, they displayed developed sand and mud flat characteristics with light rich clay content. According to high-silica and lowsilica multi-dimensional diagrams, the investigated rocks might have originated from a continental collision tectonic setting. The Zr/Rb values (0.76–6.47) mirrored a fluctuation of hydro energy during deposition of the sediments studied. Paleoclimate indexes, such as the C-value (0.03–0.49) and Sr/Cu (3.25–202.27), revealed arid to semiarid climatic conditions during deposition of the studied sediments. In addition, the chemical data were used to constrain paleoredox conditions of the depositional environment, which proved that these sediments had been deposited mainly beneath the oxic water column with relatively low paleoproductivity, as evidenced by P/Ti with an average of 0.13 and Ba/Al with an average of 34.30.

Key words

geochemistry tectonic setting paleoenvironment Upper Cretaceous Pieniny Klippen Belt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algeo, T.J. and Maynard, J.B., 2004, Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289–318.CrossRefGoogle Scholar
  2. Algeo, T.J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J., and Maynard, J.B., 2011, Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 65–83.CrossRefGoogle Scholar
  3. Armstrong-Altrin, J.S., 2015, Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57, 1446–1461.CrossRefGoogle Scholar
  4. Armstrong-Altrin, J.S. and Verma, S.P., 2005, Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177, 115–129.CrossRefGoogle Scholar
  5. Baková, L. and Soták, J., 2000, Tectonosedimentary formations of the Pieniny Klippen Belt (Orava, Slovakia): structural styles of melanges and olistostromes. Slovak Geological Magazine, 6, 198–199.Google Scholar
  6. Bezák, V., Broska, I., Ivanička, J., Reichwalder, P., Vozár, J., Polák, M., Havrila, M., Mello, J., Biely, A., Plašienka, D., Potfaj, M., Konecný, V., Lexa, J., Kaličiak, M., Žec, B., Vass, D., Elečko, M., Janočko, J., Pereszlényi, M., Marko, F., Maglay, J., and Pristaš, J., 2004, Tectonic map of Slovak Republic (1:500,000). Geological Survey of Slovak Republic Bratislava, 1 p.Google Scholar
  7. Bhatia, M.R., 1983, Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91, 611–627.CrossRefGoogle Scholar
  8. Birkenmajer, K., 1977, Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt Carpathians, Poland. Studia Geologica Polonica, 45, 1–159.Google Scholar
  9. Birkenmajer, K., 1986, Stages of structural evolution of the Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica, 88, 7–32.Google Scholar
  10. Birkenmajer, K. and Jednorowska, A., 1984, Upper Cretaceous stratigraphy in the Pieniny Nappe at Sromowce Nizne, Pieniny Klippen Belt (Carpathians, Poland). Studia Geologica Polonica, 83, 25–50. (in Polish with English abstract)Google Scholar
  11. Birkenmajer, K. and Jednorowska, A., 1987, Late Cretaceous foraminiferal biostratigraphy of the Pieniny Klippen Belt, Carpathians (Poland). Studia Geologica Polonica, 92, 7–28.Google Scholar
  12. Boggs, S., 2009, Petrology of Sedimentary Rocks. Cambridge University Press New York, 600 p.CrossRefGoogle Scholar
  13. Boynton, W.V., 1984, Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (ed.), Rare Earth Element Geochemistry. Elsevier, New York, p. 63–114.CrossRefGoogle Scholar
  14. Brumsack, H.-J., 1989, Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78, 851–882.CrossRefGoogle Scholar
  15. Cao, J., Wu, M., Chen, Y., Hu, K., Bian, L., Wang, L., and Zhang, Y., 2012, Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Chemie der Erde, 72, 245–252.CrossRefGoogle Scholar
  16. Crusius, J., Calvert, S., Pedersen, T., and Sage, D., 1996, Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145, 65–78.CrossRefGoogle Scholar
  17. Dean, W.E., Gardner, J.V., and Piper, D.Z., 1997, Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta, 61, 4507–4518.CrossRefGoogle Scholar
  18. Dymond, J., Suess, E., and Lyle, M., 1992, Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7, 163–181.CrossRefGoogle Scholar
  19. Froitzheim, N., Plašienka, D., and Schuster, R., 2008, Alpine tectonics of the Alps and Western Carpathians. In: McCann, T. (ed.), The Geology of Central Europe, Vol. 2: Mesozoic and Cenozoic. Geological Society, London, p. 1141–1232.CrossRefGoogle Scholar
  20. Fu, X., Wang, J., Chen, W., Feng, X., Wang, D., Song, C., and Zeng, S., 2016, Elemental geochemistry of the early Jurassic black shales in the Qiangtang Basin, eastern Tethys: constraints for palaeoenvironment conditions. Geological Journal, 51, 443–454.CrossRefGoogle Scholar
  21. Gasiński, M.A., 1983, Albian and Cenomanian planktic Foraminiferida from the Trawne Beds (Pieniny Klippen Belt, Polish Carpathians). Cretaceous Research, 4, 221–249.CrossRefGoogle Scholar
  22. Gasiński, M.A., 1988, Foraminiferal biostratigraphy of the Albian and Cenomanian sediments in the Polish part of the Pieniny Klippen Belt, Carpathian Mountains. Cretaceous Research, 9, 217–247.CrossRefGoogle Scholar
  23. Haskin, L.A., Wildeman, T.R., and Haskin, M.A., 1968, An accurate procedure for the determination of the rare earths by neutron activation. Journal of Radioanalytical Chemistry, 1, 337–348.CrossRefGoogle Scholar
  24. Hatch, J.R. and Leventhal, J.S., 1992, Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.CrossRefGoogle Scholar
  25. Hernández-Hinojosa, V., Montiel-García, P.C., Armstrong-Altrin, J.S., Nagarajan, R., and Kasper-Zubillaga, J.J., 2018, Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences, 13, 161–174.Google Scholar
  26. Holland, H.D., 1978, The Chemistry of the Atmosphere and Oceans. Wiley New York, 351 p.Google Scholar
  27. Hu, J., Li, Q., Song, C., Wang, S., and Shen, B., 2017, Geochemical characteristics of the Permian sedimentary rocks from Qiangtang Basin: constraints for paleoenvironment and paleoclimate. Terrestrial, Atmospheric and Oceanic Sciences, 28, 271–282.CrossRefGoogle Scholar
  28. Hunt, J.M., 1979, Petroleum Geochemistry and Geology. W. H. Freeman and Company San Francisco, 617 p.Google Scholar
  29. Jia, J., Liu, Z., Bechtel, A., Strobl, S.A.I., and Sun, P., 2013, Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). International Journal of Earth Sciences, 102, 1717–1734.CrossRefGoogle Scholar
  30. Jones, B. and Manning, D.A.C., 1994, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.CrossRefGoogle Scholar
  31. Kimura, H. and Watanabe, Y., 2001, Oceanic anoxia at the Precambrian–Cambrian boundary. Geology, 29, 995–998.CrossRefGoogle Scholar
  32. Kováč, M., Nagymarosy, A., Oszczypko, N., Csontos, L., Slaczka, A., Marunteanu, M., Matenco, L., and Márton, E., 1998, Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Rakús, M. (ed.), Geodynamic Development of the Western Carpathians. Geological Survey of Slovak Republic, Bratislava, p. 189–217.Google Scholar
  33. Kováč, M., Plašienka, D., Soták, J., Vojtko, R., Oszczypko, N., Less, G., Ćosović, V., Fügenschuh, B., and Králiková, S., 2016, Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 140, 9–27.CrossRefGoogle Scholar
  34. Lerman, A., 1978, Lakes: Chemistry, Geology, Physics. Springer-Verlag New York, 366 p.CrossRefGoogle Scholar
  35. Lewan, M.D. and Maynard, J.B., 1982, Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta, 46, 2547–2560.CrossRefGoogle Scholar
  36. Luo, Q.Y., Zhong, N.N., Zhu, L., Wang, Y.N., Qin, J., Qi, L., Zhang, Y., and Ma, Y., 2013, Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China. Chinese Science Bulletin, 58, 1299–1309.CrossRefGoogle Scholar
  37. Maheľ, M., 1986, Geologická stavba československých Karpát Paleoalpínske jednotky 1. VEDA vydavateľstvo Slovenskej akadémie vied, Bratislava, 503 p.Google Scholar
  38. Marschalko, R., Haško, J., and Samuel, O., 1979, Záskalie breccias and genesis of olistostromes. Geologické práce, Správy, 73, 75–88. (in Slovak with English abstract)Google Scholar
  39. Meng, Q., Liu, Z., Bruch, A.A., Liu, R., and Hu, F., 2012, Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. Journal of Asian Earth Sciences, 45, 95–105.CrossRefGoogle Scholar
  40. Mišík, M., 1997, The Slovak part of the Pieniny Klippen Belt after the pioneering works of D. Andrusov. Geologica Carpathica, 48, 209–220.Google Scholar
  41. Nemčok, J., Kullmanová, A., and Ďurkovič, T., 1989, Facies- and stratigraphical analyses of Gregorianka breccias in Klippen Belt of East Slovakia. Geologické práce, Správy, 89, 11–37. (in Slovak with English abstract)Google Scholar
  42. Paytan, A. and Griffith, E.M., 2007, Marine barite: recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 687–705.CrossRefGoogle Scholar
  43. Paytan, A., Kastner, M., and Chavez, F.P., 1996, Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274, 1355–1357.CrossRefGoogle Scholar
  44. Periasamy, V. and Venkateshwarlu, M., 2017, Petrography and geochemistry of Jurassic sandstones from the Jhuran Formation of Jara dome, Kachchh basin, India: implications for provenance and tectonic setting. Journal of Earth System Science, 126, 44.CrossRefGoogle Scholar
  45. Plank, T. and Langmuir, C.H., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325–394.CrossRefGoogle Scholar
  46. Plašienka, D., 2012a, Jurassic syn-rift and Cretaceous syn-orogenic, coarse-grained deposits related to opening and closure of the Vahic (South Penninic) Ocean in the Western Carpathians–an overview. Geological Quarterly, 56, 601–628.CrossRefGoogle Scholar
  47. Plašienka, D., 2012b, Early stages of structural evolution of the Carpathian Klippen Belt (Slovakian Pieniny sector). Mineralia Slovaca, 44, 1–16.Google Scholar
  48. Plašienka, D. and Mikuš, V., 2010, Geological setting of the Pieniny and Šariš sectors of the Klippen Belt between Litmanová and Drienica villages in the eastern Slovakia. Mineralia Slovaca, 42, 155–178. (in Slovak with English abstract)Google Scholar
  49. Plašienka, D., Soták, J., Jamrichová, M., Halásová, E., Pivko, D., Józsa, Š., Madzin, J., and Mikuš, V., 2012, Structure and evolution of the Pieniny Klippen Belt demonstrated along a section between Jarabina and Litmanová villages in Eastern Slovakia. Mineralia Slovaca, 44, 17–38.Google Scholar
  50. Pujol, F., Berner, Z., and Stüben, D., 2006, Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: chemostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 120–145.CrossRefGoogle Scholar
  51. Roser, B.P. and Korsch, R.J., 1986, Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94, 635–650.CrossRefGoogle Scholar
  52. Ross, D.J.K. and Bustin, R.M., 2009, Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 260, 1–19.CrossRefGoogle Scholar
  53. Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., and Ustaszewski, K., 2008, The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.CrossRefGoogle Scholar
  54. Taylor, S.R. and McLennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications Oxford, 312 p.Google Scholar
  55. Tenger, Liu, W., Xu, Y., Chen, J., Hu, K., and Gao, C., 2006, Comprehensive geochemical identification of highly evolved marine hydrocarbon source rocks: organic matter, paleoenvironment and development of effective hydrocarbon source rocks. Chinese Journal of Geochemistry, 25, 333–340.CrossRefGoogle Scholar
  56. Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., 2006, Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232, 12–32.CrossRefGoogle Scholar
  57. Tyrrell, T., 1999, The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400, 525–531.CrossRefGoogle Scholar
  58. Verma, S.P. and Armstrong-Altrin, J.S., 2013, New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.CrossRefGoogle Scholar
  59. Wang, Z., Fu, X., Feng, X., Song, C., Wang, D., Chen, W., and Zeng, S., 2017, Geochemical features of the black shales from the Wuyu Basin, southern Tibet: implications for palaeoenvironment and palaeoclimate. Geological Journal, 52, 282–297.CrossRefGoogle Scholar
  60. Wedepohl, K.H., 1978, Handbook of Geochemistry. Springer-Verlag Berlin, 442 p.Google Scholar
  61. Wedepohl, K.H., 1991, The composition of the upper Earth’s crust and the natural cycles of selected metals, metals in natural raw materials, natural resources. In: Merian, E. (ed.), Metals and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance. Verlag Chemie, Weinheim, p. 3–17.Google Scholar
  62. Wignall, P.B. and Twitchett, R.J., 1996, Oceanic anoxia and the end Permian mass extinction. Science, 272, 1155–1158.CrossRefGoogle Scholar
  63. Wójcik-Tabol, P., 2006, Organic carbon accumulation events in the mid-Cretaceous rocks of the Pieniny Klippen Belt (Polish Carpathians)–a petrological and geochemical approach. Geological Quarterly, 50, 419–436.Google Scholar
  64. Wójcik-Tabol, P., 2008a, Trace elements and mineral assemblage as palaeoenvironmental markers in the Cenomanian/Turonian Magierowa Member (Pieniny Klippen Belt, West Carpathians). Studia Geologica Polonica, 131, 247–268.Google Scholar
  65. Wójcik-Tabol, P., 2008b, Inorganic geochemical records of local palaeoenvironmental variability in the Jaworki Formation (Upper Cretaceous) of the Niedzica Succession, Pieniny Klippen Belt (Western Carpathians). Studia Geologica Polonica, 131, 269–280.Google Scholar
  66. Wójcik-Tabol, P. and Oszczypko, N., 2012, Trace element geochemistry of the Early to Late Cretaceous deposits of the Grajcarek thrustsheets–a palaeoenvironmental approach (Małe Pieniny Mts., Pieniny Klippen Belt, Poland). Geological Quarterly, 56, 169–186.CrossRefGoogle Scholar
  67. Xu, L., Lehmann, B., Mao, J., Nägler, T.F., Neubert, N., Böttcher, M.E., and Escher, P., 2012, Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment. Chemical Geology, 318–319, 45–59.CrossRefGoogle Scholar
  68. Yarincik, K.M., Murray, R.W., Lyons, T.W., Peterson, L.C., and Haug, G.H., 2000, Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15, 593–604.CrossRefGoogle Scholar
  69. Zaid, S.M., 2015a, Integrated petrographic, mineralogical, and geochemical study of the Late Cretaceous–Early Tertiary Dakhla Shales, Quseir-Nile Valley Province, central Egypt: implications for source area weathering, provenance, and tectonic setting. Arabian Journal of Geosciences, 8, 9237–9259.CrossRefGoogle Scholar
  70. Zaid, S.M., 2015b, Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences, 102, 1–17.CrossRefGoogle Scholar
  71. Zaid, S.M., 2016, Geochemistry of shales from the Upper Miocene Samh Formation, north Marsa Alam, Red Sea, Egypt: implications for source area weathering, provenance, and tectonic setting. Arabian Journal of Geosciences, 9, 593.CrossRefGoogle Scholar
  72. Zeng, S., Wang, J., Fu, X., Chen, W., Feng, X., Wang, D., Song, C., and Wang, Z., 2015, Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Marine and Petroleum Geology, 64, 203–221.CrossRefGoogle Scholar
  73. Zhao, Z., Zhao, J., Wang, H., Liao, J., and Liu, C., 2007, Distribution characteristics and applications of trace elements in Junggar Basin. Natural Gas Exploration and Development, 30, 30–33. (in Chinese with English abstract)Google Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marek Vd’ačný
    • 1
    Email author
  • Jozef Madzin
    • 2
  • Dušan Plašienka
    • 3
  1. 1.Geological DivisionEarth Science Institute of the Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Geophysical DivisionEarth Science Institute of the Slovak Academy of SciencesBanská BystricaSlovakia
  3. 3.Department of Geology and PaleontologyFaculty of Natural Sciences of the Comenius University in BratislavaBratislavaSlovakia

Personalised recommendations