Advertisement

CCWater – A computer program for chemical classification of geothermal waters

  • Rodolfo Pérez-Espinosa
  • Kailasa PandarinathEmail author
  • Francisco Javier Hernández-Campos
Article
  • 17 Downloads

Abstract

CCWater is a computer program developed for the application of extensively being used triangular diagrams for chemical classification and for identification of equilibrium conditions of waters. The program for these diagrams were developed as a Microsoft Excel™ spreadsheet application and compiled using Visual Basic™ 6.0, which has enabled to execute an Excel™ file from a program created by Visual Basic™ 6.0. The performances of all the four diagrams were validated by applying for the same chemical concentration data of the waters that was used by the original authors of these diagrams. The results obtained from this program were consistent with those of the original authors of these diagrams. As an example, CCWater is applied for chemical characterization of thermal waters from springs and geothermal wells of five geothermal fields of Mexico, in which four are electricity producing fields (Cerro Prieto, CPGF; Las Tres Vírgenes, LTVGF; Los Azufres, LAGF, and Los Humeros, LHGF) and the fifth geothermal field (La Primavera, LPGF) is in exploration stage. Majority of the reservoir temperatures estimated by Na/K geothermometers from geothermal well waters of CPGF, LAGF, LTVGF, and LPGF are within the limits of accepted differences (within ±20%) comparing to the average BHTs of the respective geothermal well. The good performances of the geothermometers in predicting the reservoir temperatures from well waters is expected because the well waters are fully equilibrated and are of Cl type, thus fulfilling the basic requirements. In contrary, though the spring waters of LHGF and LAGF are of HCO3 type (immature) and exhibited no equilibrium conditions, they also predicted reliable reservoir temperatures. This unusual but important observation in the behavior of the spring waters of LHGF and LAGF was made possible to known by chemical classification of these waters in to different groups and estimation of the reservoir temperatures by considering each water type of a geothermal field as a separate group. This application has shown the importance of chemical type of water and the existing chemical equilibrium conditions in successful using these waters in estimation of the reservoir temperatures, and hence the necessity of the computer program like CCWater. The software CCWater is easy to use, reliable, freely available and will be useful in the application of ternary diagrams for chemical characterization and to evaluate the equilibrium conditions of geothermal waters, particularly during the initial stage of geothermal exploration.

Key words

solute geothermometry thermal waters equilibrium conditions water rock interaction reservoir temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12303_2018_64_MOESM1_ESM.docx (1.1 mb)
Supplementary material, approximately 1100 KB.
12303_2018_64_MOESM2_ESM.docx (2.5 mb)
Supplementary material, approximately 2525 KB.
12303_2018_64_MOESM3_ESM.docx (108 kb)
Supplementary material, approximately 109 KB.
12303_2018_64_MOESM4_ESM.exe (28.8 mb)
Supplementary material, approximately 29512 KB.
12303_2018_64_MOESM5_ESM.xls (1.3 mb)
Supplementary material, approximately 1356 KB.
12303_2018_64_MOESM6_ESM.xls (3 mb)
Supplementary material, approximately 3089 KB.
12303_2018_64_MOESM7_ESM.xls (246 kb)
Supplementary material, approximately 247 KB.
12303_2018_64_MOESM8_ESM.xls (400 kb)
Supplementary material, approximately 400 KB.

References

  1. Aguilera, E Öztekin., Cioni, R., Gherardi, F., Magrob, G., Marini, L., and Pang, Z., 2005, Chemical and isotope characteristics of the Chachimbiro geothermal fluids (Ecuador). Geothermics, 34, 495–517.CrossRefGoogle Scholar
  2. Ahmad, M., Akram, W., Ahmed, N., Tasneem, M.A., and Latif, Z., 2002, Assessment of reservoir temperatures of thermal springs of the northern are–as of Pakistan by chemical and isotope geothermometry. Geothermics, 31, 613–631.CrossRefGoogle Scholar
  3. Aitchison, J., 1986, The Statistical Analysis of Compositional Data. Chapman and Hall, London, 416 p.CrossRefGoogle Scholar
  4. Appelo, C.A.J. and Postma, D., 1993, Geochemistry, Grondwater and Pollution. Balkema, Rotterdam, 649 p.Google Scholar
  5. Armienta, M., Villaseñor, G., Rodriguez, R., Ongley, L.K., and Mango, H., 2001, The role of arsenic-bearing rocks in groundwater pollution at Zimapán Valley, México. Environmental Geology, 40, 571–581.CrossRefGoogle Scholar
  6. Arnorsson, S., 1983, Chemical equilibria in icelandic geothermal systems- implications for chemical geothermometry investigations. Geothermics, 12, 119–128.CrossRefGoogle Scholar
  7. Arnórsson, S. (ed.), 2000, Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use: Sampling Methods, Data Handling, Interpretation. International Atomic Energy Agency, Vienna, 351 p.Google Scholar
  8. Barragán, R.M., Nieva, D., Santoyo, E., González, P.E., Verma, M., and López, J., 1991, Geoquímica de fluidos del campo geotérmico de Los Humeros (México). Geotermia, Revista Mexicana de Geoenergía 7, 23–47.Google Scholar
  9. Bernard, R., Taran, Y., Pennisi, M., Tello, E., and Ramirez, A., 2011, Chloride and boron behavior in fluid of Los Humeros geothermal field (México): a model based on the existence of deep acid brine. Applied Geochemistry, 26, 2064–2073.CrossRefGoogle Scholar
  10. Butler, J.C., 1979, Trends in ternary petrologic variation diagrams–fact or fantasy? American Mineralogist, 64, 1115–1121.Google Scholar
  11. Chayes, F., 1960, On correlation between variables of constant sum. Journal of Geophysical Research, 65, 4185–4193.CrossRefGoogle Scholar
  12. Cortecci, G., Dinelli, E., Bolognesi, L., Boschetti, T., and Ferrara. G., 2001, Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy. Geothermics, 30, 69–591.CrossRefGoogle Scholar
  13. Ellis, A. and Mahon, W., 1977, Chemistry and Geothermal Systems. Academic Press, New York, 392 p.Google Scholar
  14. Fara, M., Chandrasekharam, D., and Minissale, A., 1999, Hydrogeochemistry of Damt thermal spring, Yemen Republic. Geothermics, 28, 241–252.CrossRefGoogle Scholar
  15. Fatta, D., Papadopoulos, A., and Loizidou, M., 1999, A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21, 175–190.CrossRefGoogle Scholar
  16. Freeze, R.A. and Cherry, J.A., 1979, Groundwater. Prentice-Hall, Englewood Cliffs, 588 p.Google Scholar
  17. Fried, J.J., 1975, Groundwater pollution theory, methodology, modelling and practical rules. In: Fried, J.J. (ed.), Developments in Water Science. Elsevier Scientific Publishing Company, Amsterdam, p. 312–346.Google Scholar
  18. García-Soto, A.Y., Pandarinath, K., Marrero-Ochoa, J.E., and Díaz-Gómez, C., 2016, Solute geothermometry of Cerro Prieto and Los Humeros geothermal fields Mexico. Arabian Journal of Geosciences, 9, 517. https://doi.org/10.1007/s12517-016-2529-0 CrossRefGoogle Scholar
  19. Giggenbach, W.F., 1988, Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765.CrossRefGoogle Scholar
  20. Glover, R. and Mroczek, E., 2009, Chemical changes in natural features and well discharges in response to production at Wairakei, New Zeland. Geothermics, 38, 117–133.CrossRefGoogle Scholar
  21. González-Partida, E., Carrillo-Chávez, A., Levresse, G., Tello-Hinojosa, E., Venegas-Salgado, S., Ramirez-Silva, G., Pal-Verma, M., Tritlla, J., and Camprubi, A., 2005, Hydrogeochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico. Applied Geochemistry, 20, 23–39.CrossRefGoogle Scholar
  22. Güleç, N., 1994, Geochemistry of thermal waters and its relation to the volcanism in the Kizilcahamam (Ankara) area, Turkey. Journal of Volcanology and Geothermal Research, 59, 295–312.CrossRefGoogle Scholar
  23. Gunn, J., Bottrell, S.H., Lowe, D.J., and Worthington, S.R.H., 2006, Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeology Journal, 14, 868–881.CrossRefGoogle Scholar
  24. Gutiérrez-Negrín, L.C.A., 1991, Recursos Geotérmicos en La Primavera, Jalisco. Ciencia y Desarrollo, 16, 57–69.Google Scholar
  25. Gutiérrez-Negrín, L. and Izquierdo-Montalvo, G., 2010, Review and update of the main features of the Los Humeros Geothermal Field, Mexico. Proceedings of the World Geothermal Congress 2010, Bali, Apr. 25–30, International Geothermal Association, p. 1–7.Google Scholar
  26. Handa, B.K., 1964, Modified procedure for rating of irrigation waters. Soil Science, 98, 264–269.CrossRefGoogle Scholar
  27. Handa, B.K., 1965, Modified Hill-Piper diagram for classification of groundwater in arid and semi-arid regions. Geochemical Society of India Bulletin, 1, 20–24.Google Scholar
  28. Hill, R.A., 1940, Geochemical patterns in the Coachella valley, California. EOS Transactions American Geophysical Union, 21, 46–49.CrossRefGoogle Scholar
  29. Kumar, P.J.S., 2013, Interpretation of groundwater chemistry using piper and chadha’s diagrams: a comparative study from perambalur taluk. Elixir Geoscience, 54, 12208–12211.Google Scholar
  30. Lakshmanan, E., Kannan, R., and Kumar, M.S., 2003, Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10, 157–166.CrossRefGoogle Scholar
  31. Lasaga, A.C., 1984, Chemical kinetics of water rock interactions. Journal of Geophysical Research, 89, 4009–4025.CrossRefGoogle Scholar
  32. Mahood, G.A., Truesdell, A.H., and Templos, M.L.A., 1983, A reconnaissance geochemical study of La Primavera geothermal area, Jalisco, Mexico. Journal of Volcanology and Geothermal Research, 16, 247–261.CrossRefGoogle Scholar
  33. Manon, A., Mazor, E., Jimenez, M., Sanchez, A., Fausto, J., and Zenizo, C., 1977, Extensive geochemical studies in the geothermal field of Cerro Prieto, Mexico. Report LBL-70 19, Lawrence Berkeley Laboratory, Berkeley, 121 p.CrossRefGoogle Scholar
  34. Marques, J., Matias, M., Basto, M., Carreira, P., Aires-Barros, L., and Goff, F., 2010, Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal system in granitic rocks. Geothermics, 39, 152–160.CrossRefGoogle Scholar
  35. Martinez, R.G., Jacquier, B., and Arnold, M., 1996, The d34S composition of sulfates and sulfides at the Los Humeros geothermal system, Mexico and their application to physicochemical fluid evolution. Journal of Volcanology and Geothermal Research, 73, 99–118.CrossRefGoogle Scholar
  36. Michel, F., Allen, D., and Grant, M., 2002, Hydrogeochemistry and geothermal characteristics of the White Lake basin, South-central British Columbia, Canada. Geothermics, 31, 169–194.CrossRefGoogle Scholar
  37. Mohammadi, Z., Bagheri, R., and Jahanshahi, R., 2010, Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran. Geothermics, 39, 242–249.CrossRefGoogle Scholar
  38. Molina, B.R. and Banwell, C.J., 1970, Chemical studies in Mexican geothermal fields. Geothermics, 2, 1377–1391.CrossRefGoogle Scholar
  39. Morris, M.D., Berk, J.A., Krulik, J.W., and Eckstein, Y., 1983, A computer program for a trilinear diagram plot and analysis of water mixing systems. Ground Water, 21, 67–78.CrossRefGoogle Scholar
  40. Mustard, P.S. and Richardson. J.M., 1990, A Lotus 1-2-3 template for triangular plots. Geobyte, 5, 47–53.Google Scholar
  41. Naik, P.K., Awasthi, A.K., Anand, A.V.S.S., and Behera, P., 2009, Hydrogeochemistry of the Koyna River basin, India. Environmental Earth Sciences, 59, 613. https://doi.org/10.1007/s12665-009-0059-8 CrossRefGoogle Scholar
  42. Nicholson, K., 1993, Geothermal Fluids: Chemistry and Exploration Techniques. Springer, New York, 263 p.CrossRefGoogle Scholar
  43. Ochieng, L., 2013, Overview of geothermal surface exploration methods. Short Course VIII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, Lake Bogoria and Lake Naivasha, Kenya, Oct. 31–Nov. 22, 2013.Google Scholar
  44. Öztekin, O. and Çetindag, B., 2005, Hydrogeochemical and isotopic investigation of the Kolan geothermal field, southeastern Turkey. Environmental Geology, 48, 179–188.CrossRefGoogle Scholar
  45. Palabiyik, Y. and Serpen, U., 2008, Geochemical assessment of Simav geothermal field, Turkey. Revista Mexicana de Ciencias Geológicas, 25, 408–425.Google Scholar
  46. Pandarinath, K., 2011, Solute geothermometry of springs and wells of the Los Azufres and Las Tres Vírgenes geothermal fields, Mexico. International Geology Review, 53, 1032–1058.CrossRefGoogle Scholar
  47. Pandarinath, K., 2014, Testing of the recently developed tectonomagmatic discrimination diagrams from hydrothermally altered igneous rocks of 7 geothermal fields. Turkish Journal of Earth Sciences, 23, 412–426.CrossRefGoogle Scholar
  48. Pandarinath, K., Shankar, R., Torres-Alvarado, I.S., and Warrier, A.K., 2014, Magnetic susceptibility of volcanic rocks in geothermal areas: application potential in geothermal exploration studies for identification of rocks and zones of hydrothermal alteration. Arabian Journal of Geosciences, 7, 2851–2860.CrossRefGoogle Scholar
  49. Pandarinath, K. and Domínguez, H., 2015, Evaluation of the solute geothermometry of thermal springs and drilled wells of La Primavera (Cerritos Colorados) geothermal field, Mexico: a geochemometrics approach. Journal of South American Earth Sciences, 62, 109–124.CrossRefGoogle Scholar
  50. Partida, E.G., Tello, H.E., and Verma, M.P., 2001, Características geoquímicas de las aguas del reservorio del sistema hidrotermal actual de las Tres Vírgenes B. C. S. México. Ingeniería Hidráulica en México, XVI, 47–56.Google Scholar
  51. Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25, 914–928.CrossRefGoogle Scholar
  52. Pirlo, M.C. and Giblin, A.M., 2004, Application of groundwater-mineral equilibrium calculationsto geochemical exploration for sediment- hosted uranium: observations from the Frome Embayment, South Australia. Geochemistry: Exploration, Environment, Analysis, 4, 113–127.Google Scholar
  53. Portugal, E., Birkle, P., Barragán, R., Arellano, G., Tello, E., and Tello, M., 2000, Hydrochemicalisotopic and hydrogeological conceptual model of the Las Tres Vírgenes geothermal field, California Sur, México. Journal of Volcanology and Geothermal Research, 101, 223–244.CrossRefGoogle Scholar
  54. Prol-Ledesma, R.M., Hernandez-Lombardini, S.I., and Lozano-Santa Cruz, R., 1995, Chemical variations in the rocks of La Primavera geothermal field (Mexico) related with hydrothermal alteration. Proceedings of the 17th New Zealand Geothermal Workshop, Auckland, p. 47–53.Google Scholar
  55. Ragland, P.C., 1989, Basic Analytical Petrology. Oxford University Press, New York, 369 p.Google Scholar
  56. Ramírez-Domínguez, E., Verma, M.P., Nieva, D., Quijano, J.L., and Moreno, J., 1988, Ebullicion y mezcla en procesos de formacion de Fuentes termales en Los Azufres, Mich. Geotermia Revista Mexicana de Geoenergía, 2, 59–77.Google Scholar
  57. Rao, N., 1998, MHPT.BAS: a computer program for modified Hill-Piper diagram for classification of ground water. Computers & Geosciences, 24, 991–1008.CrossRefGoogle Scholar
  58. Rao, N.S., Rao, P.S., Reddy, G.V., Nagamani, M., Vidyasagar, G., and Satyanarayana, N.L.V.V., 2012, Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184, 5189–5214.CrossRefGoogle Scholar
  59. Romani, S., 1981, A new diagram for classification of natural waters and interpretation of chemical analyses data. Studies in Environmental Science, 17, 743–748.CrossRefGoogle Scholar
  60. Ruffa, G.L., Panichi, C., Kavouridis, T., Liberopoulou, V., Leontiadis, J., and Caprai, A., 1999, Isotope and chemical assessment of geothermal potential of Kos Island Greece. Geothermics, 28, 205–217.CrossRefGoogle Scholar
  61. Sadashivaiah, C., Ramakrishnaiah, C.R., and Ranganna, G., 2008, Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public Health, 5, 158–164.CrossRefGoogle Scholar
  62. Saibi, H. and Ehara, S., 2010, Temperature and chemical changes in the fluids of the Obama geothermal field (SW Japan) in response to field utilization. Geothermics, 39, 228–241.CrossRefGoogle Scholar
  63. Stumm, W. and Morgan, J.J., 1995, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (3rd edition). John Wiley & Sons, New York, 1040 p.Google Scholar
  64. Sugiaman, F., Sunio, E., Molling, P., and Stimac, J., 2004, Geothermal response to production of the Tiwi geothermal field, Philippines. Geothermics, 33, 57–86.CrossRefGoogle Scholar
  65. Takeno, N., 2000, Thermal and geochemical structure of the Uenotai geothermal system, Japan. Geothermics, 29, 257–277.CrossRefGoogle Scholar
  66. Taran, Y. and Peiffer, L., 2009, Hydrology, hydrochemistry and geothermal potential of El Chichón volcano-hydrothermal system, Mexico. Geothermics, 38, 370–378.CrossRefGoogle Scholar
  67. Tello, H., 1992, Composición química de la fase liquida a descarga total ya condiciones de reservorio de pozos geotérmicos de Los Humeros Puebla México. Geofísica internacional, 31, 383–390.Google Scholar
  68. Tello, H., Verma, M., and Tovar, A., 2000, Origin of acidity in the Los Humeros, México, geothermal reservoir. Proceedings of the World Geothermal Congress 2000, Kyushu-Yohoku, May 28–Jun. 10, p. 2959–2966.Google Scholar
  69. Templos, M.L., 1980, Geoquímica preliminar del campo geotérmico de la primavera Jalisco, México. Comisión Federal de Electricidad, Departamento de Geotermia, Internal Report, 20 p.Google Scholar
  70. Valette-Silver, J.N., Esquer, P.I., Elders, W.A., Collier, P.C., and Hoagland, J.R., 1981, Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field. Proceedings of the 3rd Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, San Francisco, Mar. 24–26, p. 140–145.Google Scholar
  71. Verma, S.P., 2015, Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.CrossRefGoogle Scholar
  72. Verma, S.P., Pandarinath, K., Santoyo, E., González-Partida, E., Torres- Alvarado, I.S., and Tello-Hinojosa, E., 2006, Fluid chemistry and temperatures prior to exploitation of the Las Tres Vírgenes geothermal field, Mexico. Geothermics, 35, 156–180.CrossRefGoogle Scholar
  73. Verma, S.P., Pandarinath, K., and Santoyo, E., 2008, SolGeo: A new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermics, 37, 597–621.CrossRefGoogle Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rodolfo Pérez-Espinosa
    • 2
  • Kailasa Pandarinath
    • 1
    Email author
  • Francisco Javier Hernández-Campos
    • 3
  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoMorelosMexico
  2. 2.Posgrado en Ingeniería, Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoMorelosMexico
  3. 3.Instituto Tecnológico de ZacatepecZacatepec de HidalgoMorelosMexico

Personalised recommendations