Advertisement

Geosciences Journal

, Volume 21, Issue 6, pp 845–865 | Cite as

Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: An overview

  • Moonsup ChoEmail author
  • Yuyoung Lee
  • Taehwan Kim
  • Wonseok Cheong
  • Yoonsup Kim
  • Seung Ryeol Lee
Review

Abstract

This contribution provides an overview on geology, geochronology, and tectonics of Precambrian basement massifs and adjoining Gyeonggi Marginal Belt (GMB), Korea. The three massifs (Gyeonggi, Yeongnam, and Nangrim) record tectonothermal events represented by ∼2.0–1.85 Ga arc-related magmatism and collisional orogenesis, culminating at ∼1.88–1.85 Ga. The oldest (∼2.51 Ga) migmatitic gneisses limitedly occur in the Nangrim and Gyeonggi massifs, suggesting the North China Craton (NCC) affinity of both massifs. The Yeongnam Massif is characterized by the occurrence of ∼1.87–1.86 Ga anorthosite-mangerite-charnockite-granite suite. This anorthositic suite is a late-orogenic product linked to the amalgamation of ‘Paleoproterozoic Korean arc’ with the North China Craton, forming the Columbia/Nuna supercontinent. The majority of Hf and Nd model ages of basement gneisses are in the range of ∼3.5–2.5 Ga, attesting to the crustal evolution since the Paleoarchean. P-T paths of the Paleoproterozoic basement gneisses are apparently variable, and the Gyeonggi and Yeongnam massifs are characterized by the kyanite-sillimanite and andalusite-sillimanite facies types, respectively. The GMB comprises three fold-and-thrust sub-belts (Imjingang Belt, Taean–Hongseong Complex, and Ogcheon Metamorphic Belt) which are correlative with each other in terms of tectonostratigraphy and detrital zircon geochronology. Two (meta)sedimentary units are diagnostic of this belt: (1) the Neoproterozoic Sangwon Supergroup sharing the provenance with younger rocks in the Ogcheon Belt; and (2) the Devonian turbiditic sequences present in all the three sub-belts. The latter are most distinctive in their detrital zircon age distribution characterized by two major populations at ∼1000–950 Ma and 450–430 Ma. This age pattern as well as the turbiditic lithology is critical for the correlation between the GMB and the Qinling Belt. Taken together, we suggest that the South China Craton-like GMB units are built upon the NCC-like basement (Gyeonggi Massif); this feature is the key to the Qinling–Gyeonggi microcontinent model which accounts for the assembly of a variety of tectonic slivers in the GMB.

Key words

Gyeonggi Massif Yeongnam Massif Gyeonggi Marginal Belt SHRIMP U-Pb ages detrital zircon geochronology Qinling–Gyeonggi microcontinent North China Craton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, Y., Park, K.-H., Kim, N.-H., Song, Y.-S., and Amakawa, H., 2003, Geochemistry and tectonic implications of Proterozoic amphibolites in the northeastern part of the Yeongnam massif, South Korea. Island Arc, 12, 180–189.CrossRefGoogle Scholar
  2. Bickford, M.E., McLelland, J.M., Mueller, P.A., Kamenov, G.D., and Neadle, M., 2010, Hafnium isotopic compositions of zircon from Adirondack AMCG suites: Implications for the petrogenesis of anorthosites, gabbros, and granitic members of the suites. Canadian Mineralogist, 48, 751–761.CrossRefGoogle Scholar
  3. Bouvier, A., Vervoort, J.D., and Patchett, P.J., 2008, The Lu-Hf and Sm- Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57.CrossRefGoogle Scholar
  4. Brown, G.C. and Mussett, A.E., 1993, The Inaccessible Earth: An Integrated View of Its Structure and Composition. Chapman & Hall, London, 276 p.CrossRefGoogle Scholar
  5. Cawood, P.A., Hawkesworth, C.J., and Dhuime, B., 2012, Detrital zircon record and tectonic setting. Geology, 40, 875–878.CrossRefGoogle Scholar
  6. Chang, H.-W., Lee, D.-H., and Park, K.-H., 1993, Magmatism and metamorphism of the Proterozoic in the northeastern part of Korea: Petrogenetic and geochemical characteristics of the Okbang amphibolites. Journal of the Korean Industrial Mining Geology, 26, 489–498.Google Scholar
  7. Chang, K., 2013, Middle Paleozoic sedimentary province within Sino-Korean Plate: Paleogeographic implication for Okcheon metamorphic zone. Journal of the Geological Society of Korea. 49, 437–452. (in Korean with English abstract)Google Scholar
  8. Cheong, C.-S., Kwon, S.-T., and Park, K.-H., 2000, Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam Massif, South Korea. Precambrian Research, 102, 207–220.CrossRefGoogle Scholar
  9. Cheong, C.-S., Kim, N., Jo, H.J., Cho, M., Choi, S.H., Zhou, H., and Geng, J.-z., 2015a, Lithospheric mantle signatures as revealed by zircon Hf isotopes of Late Triassic post-collisional plutons from the central Korean peninsula, and their tectonic implications. Terra Nova, 27, 97–105.CrossRefGoogle Scholar
  10. Cheong, C.-S., Kim, N., Kim, J., and Cho, M., 2015b, The Silurian-Devonian magmatism recorded in detrital zircons from the Andong area, northeastern Yeongnam Massif, Korea. Geosciences Journal, 19, 393–405.CrossRefGoogle Scholar
  11. Cheong, C.-S., Yi, K., Kim, N., Lee, T.-H., Lee, S.R., Geng, J.-z., and Li, H.-k., 2013, Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova, 25, 228–235.CrossRefGoogle Scholar
  12. Cheong, W.S. and Na, K.C., 2008, Origin and evolution of leucogranite of NE Yeongnam Massif from Samcheok area, Korea. Journal of the Petrological Society of Korea, 17, 16–35. (in Korean with English abstract)Google Scholar
  13. Cheong, W.S., Kim, J., and Kim, Y., 2009, U-Th-Pb SHRIMP ages of zircon and monazite in the metavolcanic and metasedimentary rocks from the northeastern Yeongnam Massif (preliminary report). Proceedings of the Annual Joint Conference, Mineralogical Society of Korea and Petrological Society of Korea (Abstract), Chuncheon, May 28–29, p. 82.Google Scholar
  14. Cho, D.-L., 2014, SHRIMP U-Pb zircon geochronology of the Guryong Group in Odesan area, east Gyeonggi Massif, Korea: A new identification of Late Paleozoic strata and its tectonic implication. Journal of the Petrological Society of Korea, 23, 197–208. (in Korean with English abstract)CrossRefGoogle Scholar
  15. Cho, D.-L. and Lee, S.B., 2016, Geological report of the Muhak-Jumundo-Yongyudo sheets (1:50,000). Korea Institute of Energy and Resources, Seoul, 52 p.Google Scholar
  16. Cho, M. and Kim, H., 2005, Metamorphic evolution of the Ogcheon metamorphic belt: Review and new age constraints. International Geology Review, 47, 41–57.CrossRefGoogle Scholar
  17. Cho, M. and Cheong, W., 2016, Comment on “Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea: implications for the Gondwana linkage of the Sino-Korea (North China) block during the Neoproterzoic–early Cambrian” by Lee et al. [Palaeogeography, Palaeoclimatology, Palaeoecology 441 (2016) 770–786]. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 606–609.CrossRefGoogle Scholar
  18. Cho, M., Kwon, S.-T., Ree, J.-H., and Nakamura, E., 1995, High-pressure amphibolite of the Imjingang belt in the Yeoncheon-Cheongok area. Journal of the Petrological Society of Korea, 4, 1–19. (in Korean with English abstract)Google Scholar
  19. Cho, M., Kim, H.C., Lee, Y., Horie, K., and Hidaka, H., 2006, The oldest tonalite in South Korea: U-Pb zircon age of ca. 2.51 Ga. 3rd Asia Oceania Geoscience Society Annual Meeting (Abstract), Singapore, Jul. 10–14.Google Scholar
  20. Cho, M., Kim, Y., and Ahn, J., 2007, Metamorphic evolution of the Imjingang belt, Korea: Implications for Permo-Triassic collisional orogeny. International Geology Review, 49, 30–51.CrossRefGoogle Scholar
  21. Cho, M., Kim, H., Lee, Y., Horie, K., and Hidaka, H., 2008, The oldest (ca. 2.51 Ga) rock in South Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geosciences Journal, 12, 1–6.CrossRefGoogle Scholar
  22. Cho, M., Na, J., and Yi, K., 2010, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 99–109.CrossRefGoogle Scholar
  23. Cho, M., Cheong, W., Ernst, W.G., Yi, K., and Kim, J., 2013, SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the central Ogcheon fold-thrust belt, Korea: Evidence for tectonic assembly of Paleozoic sedimentary protoliths. Journal of Asian Earth Sciences, 63, 234–249.CrossRefGoogle Scholar
  24. Cho, M., Kim, T., Yang, S.-Y., and Yi, K., 2017a, Paleoproterozoic to Triassic crustal evolution of the Gyeonggi Massif, Korea: Tectonic correlation with the North China Craton. In: Law, R.D., Thigpen, J.R., Merschat, A.J., and Stowell, H. (eds.), Linkages and Feedbacks in Orogenic Systems. Geological Society of America Memoir, 213, p. 165–197.Google Scholar
  25. Cho, M., Min, K., and Kim, H., 2017b, Geology of the 2018 Winter Olympic site, Pyeongchang, Korea. International Geology Review. doi.org/10.1080/00206814.2017.1340196Google Scholar
  26. Cho, Y., Cho, M., and Lee, S.R., 1996, Granulite-facies metamorphism and P-T evolutionary path of cordierite gneisses in the Cheongpyeong-Yangpyeong area. Journal of the Petrological Society of Korea, 5, 52–65. (in Korean with English abstract)Google Scholar
  27. Choi, D.K. and Chough, S.K., 2005, The Cambrian–Ordovician stratigraphy of the Taebaeksan Basin, Korea: A review. Geosciences Journal, 9, 187–214.CrossRefGoogle Scholar
  28. Choi, P.-Y., Rhee, C.W., Lim, S.-B., and So, Y., 2008, Subdivision of the Upper Paleozoic Taean Formation in the Anmyeondo-Boryeong area, west Korea: A preliminary approach to the sedimentary organization and structural features. Geosciences Journal, 12, 373–384.CrossRefGoogle Scholar
  29. Chough, S.K., 2013, Geology and Sedimentology of the Korean Peninsula. Elsevier, London, 363 p.Google Scholar
  30. Chough, S.K., Kwon, S.-T., Ree, J.-H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth-Science Reviews, 52, 175–232.CrossRefGoogle Scholar
  31. Cluzel, D., Jolivet, L., and Cadet, J.-P., 1991, Early Middle Paleozoic intraplate orogeny in the Ogcheon Belt (South Korea): A new insight on the Paleozoic buildup of East Asia. Tectonics, 10, 1130–1151.CrossRefGoogle Scholar
  32. de Jong, K., Han, S., and Ruffet, G., 2015, Fast cooling following a Late Triassic metamorphic and magmatic pulse: Implications for the tectonic evolution of the Korean collision belt. Tectonophysics, 662, 271–290.CrossRefGoogle Scholar
  33. Dong, Y. and Santosh, M., 2016, Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29, 1–40.CrossRefGoogle Scholar
  34. Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J., and Hauzenberger, C., 2011, Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41, 213–237.CrossRefGoogle Scholar
  35. Dong, Y., Liu, X., Neubauer, F., Zhang, G., Tao, N., Zhang, Y., Zhang, X., and Li, W., 2013, Timing of Paleozoic amalgamation between the North China and South China Blocks: Evidence from detrital zircon U-Pb ages. Tectonophysics, 586, 173–191.CrossRefGoogle Scholar
  36. Emslie, R.F., Hamilton, M.A., and Thériault, R.J., 1994, Petrogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex: Isotopic and chemical evidence from the Nain Plutonic Suite. Journal of Geology, 102, 539–558.CrossRefGoogle Scholar
  37. Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutièrrez-Paster, J., Eriksson, A.T., Grácia, E., Dunhill, G., Enkin, R.J., Dallimore, A., and Vallier, T., 2012, Turbidite event history–methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. Professional Paper 1661–F, U.S. Geological Survey, Reston, 170 p.Google Scholar
  38. Gou, L.-L., Zhang, C.-L., Brown, M., Piccoli, P.M., Lin, H.-B., and Wei, X.-S., 2016, P–T–t evolution of pelitic gneiss from the basement underlying the Northwestern Ordos Basin, North China Craton, and the tectonic implications. Precambrian Research, 276, 67–84.CrossRefGoogle Scholar
  39. Griffin, W.L., Pearson, N.J., Belousova, E.A., Jackson, S.E., O’Reilly, S.Y., van Achterberg, E., and Shee, S.R., 2000, The Hf isotope compositions of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133–147.CrossRefGoogle Scholar
  40. Griffin, W.L., Wang, X., Jackson, S.E., Pearson, S.E., O’Reilly, S.Y., Xu, X.S., and Zhou, X.M., 2002, Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61, 237–269.CrossRefGoogle Scholar
  41. Hacker, B.R., Wallis, S.R., Ratschbacher, L., Grove, M., and Gehrels, G., 2006, High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu orogeny. Tectonics, 25, TC5006.CrossRefGoogle Scholar
  42. Han, S., de Jong, K., and Yi, K., 2017, Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes. Journal of Asian Earth Sciences, 143, 191–217.CrossRefGoogle Scholar
  43. Harley, S.L., 2016, A matter of time: The importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences, 111, 50–72.CrossRefGoogle Scholar
  44. Horie, K., Tsutsumi, Y., Kim, H., Cho, M., Hidaka, H., and Terada, K., 2009, A U-Pb geochronological study of migmatitic gneiss in the Busan gneiss complex, Gyeonggi massif, Korea. Geosciences Journal, 13, 205–215.CrossRefGoogle Scholar
  45. Horie, K., Yamashita, M., Hayasaka, Y., Katoh, Y., Tsutsumi, Y., Katsube, A., Hidaka, H., Kim, H., and Cho, M., 2010, Eoarchean–Paleoproterozoic zircon inheritance in Japanese Mesozoic granites (Unazuki area, Hida Metamorphic Complex): Unearthing more old crust and identifying source terranes. Precambrian Research, 183, 145–157.CrossRefGoogle Scholar
  46. Hou, G., Santosh, M., Qian, X., Lister, G.S., and Li, J., 2008, Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14, 395–409.CrossRefGoogle Scholar
  47. Hu, B., Zhai, M., Li, T., Li, Z., Peng, P., Guo, J., and Kusky, T.M., 2012, Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 22, 828–842.CrossRefGoogle Scholar
  48. Isozaki, Y., Nakahata, H., Zakharov, Y.D., Popov, A.M., Sakata, S., and Hirata, T., 2017, Greater South China extended to the Khanka block: Detrital zircon geochronology of middle–upper Paleozoic sandstones in Primorye, Far East Russia. Journal of Asian Earth Sciences, 145, 565–575.CrossRefGoogle Scholar
  49. Kang, J.-H. and Lee, D.-S., 2015, Formation process and its mechanism of the Sancheong anorthosite complex, Korea. Economic and Environmental Geology, 48, 431–449. (in Korean with English abstract)CrossRefGoogle Scholar
  50. Kelsey, D.E., 2008, On ultrahigh-temperature crustal metamorphism. Gondwana Research, 13, 1–29.CrossRefGoogle Scholar
  51. Kelsey, D.E. and Hand, M., 2015, On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic setting. Geoscience Frontiers, 6, 311–356.CrossRefGoogle Scholar
  52. Keppie, J.D., Dostal, J., Cameron, K.L., Solari, L.A., Ortega-Gutiérrez, F., and Lopez, R., 2003, Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: tectonic implications. Precambrian Research, 120, 365–389.CrossRefGoogle Scholar
  53. Kim, D.-Y., Song, Y.-S., and Park, K.-H., 2002, Petrogenesis and metamorphism of charnockite of eastern Jirisan area. Journal of the Petrological Society of Korea, 11, 138–156. (in Korean with English abstract)Google Scholar
  54. Kim, H., Kihm, Y.H., and Kee, W.-S., 2012a, Geological report of the Iri Sheet (1:50,000). Korea Institute of Energy and Resources, Seoul, 51 p.Google Scholar
  55. Kim, H., Horie, K., Kim, Y., Kee W.-S., Williams, I.S., and Hidaka, H., 2013a, Middle Devonian hornblende granite of the Imjingang Belt in South Korea: SHRIMP U-Pb zircon age and its implication on the depositional age of the Imjingang Belt. Annual European Geosciences Union General Assembly (Abstract), Vienna, Apr. 7–12, EGU2013-2682.Google Scholar
  56. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: Implications for Paleoproterozoic crustal evolution. Precambrian Research, 122, 235–251.CrossRefGoogle Scholar
  57. Kim, M.J., Park, J.-W., Lee, T.-H., Song, Y.-S., and Park, K.-H., 2016, LA-MC-ICPMS U-Pb ages of the detrital zircons from the Baengnyeong Group: Implications of the dominance of the Mesoproterozoic zircons. Economic and Environmental Geology, 49, 433–444. (in Korean with English abstract)CrossRefGoogle Scholar
  58. Kim, N., Cheong, C.-S., Park, K.-H., Kim, J., and Song, Y.-S., 2012b, Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Research, 21, 865–875.CrossRefGoogle Scholar
  59. Kim, N., Cheong, C.-S., Yi, K., Song, Y.-S., Park, K.-H., Geng, J.-Z., and Li, H.-K., 2014a. Zircon U-Pb geochronological and Hf isotope constraints on the Precambrian crustal evolution of the north-eastern Yeongnam Massif, Korea. Precambrian Research, 242, 1–21.CrossRefGoogle Scholar
  60. Kim, N.H., Song, Y.-S., Park, K.-H., and Lee, H.-S., 2009, SHRIMP UPb zircon ages of the granitic gneisses from the Pyeonghae area of the northeastern Yeongnam Massif (Sobaeksan Massif). Joural of the Petrological Society of Korea, 18, 31–47. (in Korean with English abstract)Google Scholar
  61. Kim, S.W., Williams, I.S., Kwon, S., and Oh, C.W., 2008, SHRIMP zircon geochronology, and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, 162, 475–497.CrossRefGoogle Scholar
  62. Kim, S.W., Kwon, S., Santosh, M., Cho, D.L., and Ryu, I-C., 2014b, Detrital zircon U-Pb geochronology and tectonic implications of the Paleozoic sequences in western South Korea. Journal of Asian Earth Sciences, 95, 217–227.CrossRefGoogle Scholar
  63. Kim, S.W., Kwon, S., Yi, K., and Santosh, M., 2014c, Arc magmatism in the Yeongnam massif, Korean Peninsula: Imprints of Columbia and Rodinia supercontinents. Gondwana Research, 26, 1009–1027.CrossRefGoogle Scholar
  64. Kim, S.W., Kwon, S., Park, S.-I., Yi, K., Santosh, M., and Kim, H.S., 2017a, Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula: Tectonic implications. Gondwana Research, 47, 308–322.CrossRefGoogle Scholar
  65. Kim, S.W., Park, S.-I., Jang, Y., Kwon, S., Kim, S.J., and Santosh, M., 2017b, Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: Implications for the tectonic history of East Asia. Gondwana Research, 50, 195–215.CrossRefGoogle Scholar
  66. Kim, Y. and Cho, M., 2017, An allochtonous terrane in the Korean Peninsula: The Neoproterozoic Sangwon unit. Geological Association of Canada, Mineralogical Association of Canada (Abstract), Kingston, May 14–18, p. 204.Google Scholar
  67. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W., and Ryu, I.-C., 2009, Evidence of Permo-Triassic collision in Far East Asia: the Korean collisional orogeny. Earth and Planetary Science Letters, 279, 340–349.CrossRefGoogle Scholar
  68. Kwon, Y.W., Oh, C.W., and Kim, H.S., 2003, Granulite-facies metamorphism in the Punggi area, northeastern Yeongnam Massif, Korea and its tectonic implications for east Asia. Precambrian Research, 122, 253–273.CrossRefGoogle Scholar
  69. Lan, C.Y., Lee, T., Zhou, X.H., and Kwon, S.T., 1995, Nd isotopic study of Precambrian basement of South Korea: Evidence for early Archean crust? Geology, 23, 249–252.CrossRefGoogle Scholar
  70. Lee, B.C., Oh, C.W., Yengkhom, K.S., and Yi, K., 2014a, Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton. Precambrian Research, 248, 17–38.CrossRefGoogle Scholar
  71. Lee, B.C., Oh, C.W., Kim, T., and Yi, K., 2016a, The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula. Lithos, 256–257, 109–131.CrossRefGoogle Scholar
  72. Lee, B.C., Oh, C.W., and Yi, K., 2016b, Geochemistry, zircon U-Pb ages, and Hf isotopic compositions of Precambrian gneisses in the Wonju-Jechon area of the southern Gyeonggi Massif: Implications for the Precambrian tectonic evolution of Korea and northeast Asia. Precambrian Research, 283, 169–189.CrossRefGoogle Scholar
  73. Lee, B.C., Park, J.H., Oh, C.W., and Yi, K., 2017a, Metamorphic and magmatic evolution of the Paleoproterozoic gneisses in the Sancheong area, Yeongnam Massif, South Korea, and their implications to the tectonics in the Northeast Asia. Precambrian Research, 298, 439–461.CrossRefGoogle Scholar
  74. Lee, D.C., Choh, S.-J., Lee, D.-J., Ree, J.-H., Lee, J.-H., and Lee, S.-B., 2017b, Where art thou “the great hiatus?”–review of Late Ordovician to Devonian fossil-bearing strata in the Korean Peninsula and its tectonostratigraphic implications. Geosciences Journal, 21, 913–931.CrossRefGoogle Scholar
  75. Lee, K.-S., Cheong, C.-S., Park, K.-H., and Chang, H.-W., 1997, Geochemical and Sm-Nd study of amphibolite from the Muju area, Korea. Economic and Environmental Geology, 30, 313–320. (in Korean with English abstract)Google Scholar
  76. Lee, S.M., 1980, Some metamorphic aspects of the meta-pelites in Jirisan (Hadon-Sancheong) region. Journal of the Geological Society of Korea, 16, 1–15. (in Korean with English abstract)Google Scholar
  77. Lee, S.R. and Cho, M., 1995, Tectonometamorphic evolution of the Chuncheon amphibolite, central Gyeonggi massif, South Korea. Journal of Metamorphic Geology, 13, 315–328.CrossRefGoogle Scholar
  78. Lee, S.R. and Cho, M., 2003, Metamorphic and tectonic evolution of the Hwacheon granulite complex, central Korea: Composite P–T path resulting from two distinct crustal-thickening events. Journal of Petrology, 44, 197–225.CrossRefGoogle Scholar
  79. Lee, S.R. and Cho, K., 2012, Precambrian crustal evolution of the Korean Peninsula. Journal of the Petrological Society of Korea, 21, 89–112. (in Korean with English abstract)CrossRefGoogle Scholar
  80. Lee, S.R., Cho, M., Yi, K., and Stern, R., 2000, Early Proterozoic granulites in central Korea: Tectonic correlation with Chinese cratons. Journal of Geology, 108, 729–738.CrossRefGoogle Scholar
  81. Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B., and Kim, J.C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25–34.CrossRefGoogle Scholar
  82. Lee, S.R., Cho, D.-L., Cho, M., Wu, F.-Y., Kim, H., and Jeon, H., 2007, Hf isotopic evidence for Paleoarchean (> 3.5 Ga) crustal components in the Korean Peninsula. Geosciences Journal, 11, 271–277.CrossRefGoogle Scholar
  83. Lee, S.R., Cho, D.-L., and Wu, F.-Y., 2016c, Contrasting source domains for the Phanerozoic granitoids in South Korea revealed by zircon Hf isotopic signatures. Geosciences Journal, 20, 585–596.CrossRefGoogle Scholar
  84. Lee, Y. and Cho, M., 2013, Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea. Lithos, 179, 249–262.CrossRefGoogle Scholar
  85. Lee, Y., Cho, M., Cheong, W., and Yi, K., 2014b, A massif-type (∼1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: Late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova, 26, 408–416.CrossRefGoogle Scholar
  86. Lee, Y., Cho, M., and Yi, K., 2017c, In situ U-Pb and Lu-Hf isotopic studies of zircon from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite. Journal of Asian Earth Science, 138, 629–646.CrossRefGoogle Scholar
  87. Lee, Y., Cho, M., and Yi, K., 2017d, Water-fluxed partial melting in the Okbang amphibolite, Yeongnam Massif, Korea. Proceedings of the Annual Joint Conference, Mineralogical and Petrological Society of Korea (Abstract), Daegu, May 25–26, p. 49.Google Scholar
  88. Lee, Y.I., Choi, T., and Orihashi, R., 2011, LA-ICP-MS U-Pb zircon ages of the Precambrian Yuli Group. Journal of the Geological Society of Korea, 47, 81–87. (in Korean with English abstract)Google Scholar
  89. Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., and Shen, Q.H., 1992, Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20, 339–342.CrossRefGoogle Scholar
  90. Na, J., Kim, Y., Cho, M., and Yi, K., 2012, SHRIMP U-Pb Ages of detrital zircons from metasedimentary rocks in the Yeongheung-Seonjae-Daebu islands, northwestern Gyeonggi Massif. Journal of the Petrological Society of Korea, 21, 31–45. (in Korean with English Abstract)CrossRefGoogle Scholar
  91. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J., and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, 113, 226–232.CrossRefGoogle Scholar
  92. Oh, C.W., Kim, S.W., and Williams, I.S., 2006, Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557–575.CrossRefGoogle Scholar
  93. Oh, C.W., Lee, B.C., and Yi, K., 2013, The origin and age of the orbicular granite gneiss in Wanjungri, Muju. Journal of the Petrological Society of Korea, 22, 117–135. (in Korean with English abstract)CrossRefGoogle Scholar
  94. Oh, C.W., Imayama, T., Lee, S.Y., Yi, S.-B., Yi, K., and Lee, B.C., 2015, Permo-Triassic and Paleoproterozoic metamorphism related to continental collision in Yangpyeong, South Korea. Lithos, 216–217, 264–284.CrossRefGoogle Scholar
  95. Paek, R.J., Kang, H.G., and Jon, G.P., 1996, Geology of Korea. Foreign Languages Books Publishing House, Pyongyang, 631 p.Google Scholar
  96. Park, K.-H., Lee, T.-H., and Yi, K., 2011, SHRIMP U-Pb ages of detrital zircons in the Daehyangsan Quartzite of the Okcheon Metamorphic Belt, Korea. Journal of the Geological Society of Korea, 47, 423–431. (in Korean with English abstract)Google Scholar
  97. Park, S.-I., Kim, S.W., Kwon, S., Thanh, N.X., Yi, K., and Santosh, M., 2014, Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: insight from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochronology. Gondwana Research, 26, 684–698.CrossRefGoogle Scholar
  98. Park, S.-I., Kim, S.W., Kwon, S., Santosh, M., Ko, K., and Kee, W.-S., 2017, Nature of Late Mesoproterozoic to Early Neoproterozoic magmatism in the western Gyeonggi massif, Korean Peninsula and its tectonic significance. Gondwana Research, 47, 291–307.CrossRefGoogle Scholar
  99. Pattison, D.R.M., Chacko, T., Farquhar, J., and McFarlane, C.R.M., 2003, Temperatures of granulite-facies metamorphism: Constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, 44, 867–900.CrossRefGoogle Scholar
  100. Peng, P., Zhai, M.-G., Li, Q., Wu, F., Hou, Q., Li, Z., Li, T., and Zhang, Y., 2011, Neoproterozoic (∼900 Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20, 243–254.CrossRefGoogle Scholar
  101. Peng, P., Wang, C., Yang, J.H., and Kim, J.N., 2016, A preliminary study on the rock series and tectonic environment of the ∼1.9 Ga plutonic rocks in DPR Korea. Acta Petrologica Sinica, 32, 2993–3018. (in Chinese with English abstract)Google Scholar
  102. Peng, P., Wang, X., Windley, B.F., Guo, J., Zhai, M., and Li, Y., 2014, Spatial distribution of ∼1950–1800 Ma metamorphic events in the North China Craton: Implications for tectonic subdivision of the craton. Lithos, 202–203, 250–266.CrossRefGoogle Scholar
  103. Qian, J., Wei, C., Zhou, X., and Zhang, Y., 2013, Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton. Precambrian Research, 233, 282–296.CrossRefGoogle Scholar
  104. Ree, J.-H., Cho, M., Kwon, S.-T., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South-Korea: The Imjingang belt. Geology, 24, 1071–1074.CrossRefGoogle Scholar
  105. Reedman, A.J. and Um, S.H., 1975, Geology of Korea. Korea Institute of Energy and Resources, Seoul, 139 p.Google Scholar
  106. Regan, S.P., Chiarenzelli, J.R., McLelland, J.M., and Cousens, B.L., 2011, Evidence for an enriched asthenospheric source for coronitic metagabbro in the Adirondack Highlands. Geosphere, 7, 694–709.CrossRefGoogle Scholar
  107. So, Y.S., Rhee, C.W., Choi, P.-Y., Kee, W.-S., Seo, J.Y., and Lee, E.-J., 2013, Distal turbidite fan/lobe succession of the late Paleozoic Taean Formation, western Korea. Geosciences Journal, 17, 9–25.CrossRefGoogle Scholar
  108. Song, Y.S., 1999, Granulite xenoliths in porphyroblastic gneiss from Mt. Jiri area, SW Sobaegsan massif, Korea. Journal of the Petrological Society of Korea, 8, 34–45. (in Korean with English abstract)Google Scholar
  109. Song, Y.S., Park, K.H., Seo, J.H., Jo, H.J., and Yi, K., 2011, SHRIMP zircon ages of the basement gneiss complex in the Pyeongchang-Wonju area, Gyeonggi Massif, Korea. Journal of the Petrological Society of Korea, 20, 99–114. (in Korean with English Abstract)CrossRefGoogle Scholar
  110. Stevens, G., Clemens, J.D., and Droop, G.T.R., 1997, Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contributions to Mineralogy and Petrology, 128, 352–370.CrossRefGoogle Scholar
  111. Stüwe, K., 1997, Effective bulk composition changes due to cooling: A model predicting complexities in retrograde reaction textures. Contributions to Mineralogy and Petrology, 129, 43–52.CrossRefGoogle Scholar
  112. Suga, K., Yui, T.-F., Miyazaki, K., Sakata, S., Hirata, T., and Fukuyama, M., 2017, A revisit to the Higo terrane, Kyushu, Japan: The eastern extension of the North China–South China collision zone. Journal of Asian Earth Sciences, 143, 218–235.CrossRefGoogle Scholar
  113. Tagiri, M., Dunkley, D.J., Adachi, T., Hiroi, Y., and Fanning, C.M., 2011, SHRIMP dating of magmatism in the Hitachi metamorphic terrane, Abukuma belt, Japan: Evidence for a Cambrian volcanic arc. Island Arc, 20, 259–279.CrossRefGoogle Scholar
  114. Tagiri, M., Horie, K., and Adachi, T., 2016, Revised stratigraphy and zircon U-Pb age data of the Hitachi metamorphic formations in the southern Abukuma Mountains, and reconstruction of the basement of the Northeast Japan Arc before the opening of the Japan Sea. Journal of the Geological Society of Japan, 122, 231–247. (in Japanese with English abstract)CrossRefGoogle Scholar
  115. Tazawa, J.-i., 2004, The strike-slip model: a synthesis on the origin and tectonic evolution of the Japanese Islands. Journal of the Geological Society of Japan, 110, 503–517. (in Japanese with English abstract)CrossRefGoogle Scholar
  116. Tazawa, J.-i. and Araki, H., 2016, A Boreal-type brachiopod species, Waagenoconcha irginae (Stuckenberg), from the middle Permian (Wordian) of the South Kitakami Belt, Japan. Journal of the Geological Society of Japan, 122, 155–161. (in Japanese with English abstract)CrossRefGoogle Scholar
  117. Wan, Y., Liu, D., Wand, S., Dong, C., Yang, E., Zhou, H., Ning, Z., Du, L., Yin, X., Xie, H., and Ma, M., 2010, Juvenile magmatism and crustal recycling at the end of the Neoarchean in western Shandong province, North China craton: Evidence from SHRIMP zircon dating. American Journal of Science, 310, 1503–1552.CrossRefGoogle Scholar
  118. Wang, C., Peng, P., Wang, X., and Yang, S., 2016, Nature of three Proterozoic (1680 Ma, 1230 Ma and 775 Ma) mafic dyke swarms in North China: Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 285, 109–126.CrossRefGoogle Scholar
  119. Williams, M., Wallis, S., Oji, T., and Lane, P.D., 2014, Ambiguous biogeographical patterns mask a more complete understanding of the Ordovician to Devonian evolution of Japan. Island Arc, 23, 76–101.CrossRefGoogle Scholar
  120. Wu, F.-Y., Yang, J.-H., Wilde, S.A., Liu, X.-M., Guo, J.-H., and Zhai, M.-G., 2007, Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 159, 155–177.CrossRefGoogle Scholar
  121. Yang, J.H., Peng, P., Jong, C.S., Park, U., Mun, J.G., Kin, C.H., and Ku, H.C., 2016, Comparison on ages of detrital zircons from the Paleoproterozoic to Lower Paleozoic sedimentary rocks in the Pyongnam Basin, Korea. Acta Petrologica Sinica, 32, 3155–3179. (in Chinese with English abstract)Google Scholar
  122. Yengkhom, K.S., Lee, B.C., Oh, C.W., Yi, K., and Kang, J.H., 2014, Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton. Precambrian Research, 240, 37–59.CrossRefGoogle Scholar
  123. Yi, K. and Cho, M., 2009, SHRIMP geochronology and reaction texture of monazite from a retrogressive transitional layer, Hwacheon Granulite Complex, Korea. Geosciences Journal, 13, 293–304.CrossRefGoogle Scholar
  124. Yin, A. and Nie, S., 1993, An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12, 801–813.CrossRefGoogle Scholar
  125. Yoshimoto, A., Osanai, Y., Nakano, N., Adachi, T., Yonemura, K., and Ishizuka, H., 2013, U-Pb zircon dating of pelitic schists and quartzite from the Kurosegawa Tectonic Zone, Southwest Japan. Journal of the Mineralogical and Petrological Scieneces, 108, 178–183.CrossRefGoogle Scholar
  126. Zhai, M., Guo, J., Li, Z., Chen, D., Peng, P., Li, T., Hou, Q., and Fan, Q., 2007, Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 12, 388–403.CrossRefGoogle Scholar
  127. Zhai, M., Hu, B., Zhao, T., Peng, P., and Meng, Q., 2015, Late Paleoproterozoic–Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review. Tectonophysics, 662, 154–166.CrossRefGoogle Scholar
  128. Zhang, S.-H., Zhao, Y., and Santosh, M., 2012, Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222–223, 339–367.CrossRefGoogle Scholar
  129. Zhang, X., Zhang, Y., Zhai, M., Wu, F.-Y., Hou, Q., and Yuan, L., 2017, Decoding Neoarchean to Paleoproterozoic tectonothermal events in the Rangnim Massif, North Korea: Regional correlation and broader implications. International Geology Review, 59, 16–28.CrossRefGoogle Scholar
  130. Zhao, G., Cao, L., Wilde, S.A., Sun, M., Choe, W.J., and Li, S., 2006, Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science letters, 251, 365–379.CrossRefGoogle Scholar
  131. Zhao, G.C., Cawood, P.A., Li, S., Wilde, S.A., Sun, M., Zhang, J., He, Y., and Yin, C., 2012, Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222–223, 55–76.CrossRefGoogle Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Moonsup Cho
    • 1
    Email author
  • Yuyoung Lee
    • 2
    • 4
  • Taehwan Kim
    • 3
  • Wonseok Cheong
    • 1
  • Yoonsup Kim
    • 1
  • Seung Ryeol Lee
    • 4
  1. 1.Department of Earth and Environmental SciencesChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Division of Earth and Environmental SciencesKorea Basic Science InstituteCheongjuRepublic of Korea
  3. 3.School of Earth and Environmental SciencesSeoul National UniversitySeoulRepublic of Korea
  4. 4.Geology DivisionKorea Institute of Geoscience and Mineral ResourcesDaejeonRepublic of Korea

Personalised recommendations