Geosciences Journal

, Volume 22, Issue 2, pp 253–272 | Cite as

Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling

  • Yunhui Zhang
  • Huawen Cao
  • Mo Xu
  • Shouting Zhang
  • Li Tang
  • Shiyan Wang
  • Qiuming Pei
  • Guojun Cai
  • Tong Shen
Article

Abstract

Late Mesozoic granites are extensively distributed in the Luanchuan district of eastern Qinling and can be divided into two types: Late Jurassic to Early Cretaceous granites (ore-related plutons) and Late Cretaceous granites (Laojunshan batholith). This study presents new geochemical and zircon U-Pb-Hf isotopic data from the Shibaogou and Yuku plutons to provide robust constraints on the petrogenesis and tectonic significance of the late Mesozoic granites in the Luanchuan district. Zircon U-Pb dating results yielded weighted mean 206Pb/238U ages of 149.1 ± 0.8 Ma and 150.5 ± 0.8 Ma, which were interpreted as the crystallization ages of the Shibaogou and Yuku plutons, respectively. We propose that the late Mesozoic granites contain high concentrations of SiO2 and alkali elements (Na2O + K2O) and feature metaluminous to weakly peraluminous characteristics. Enrichment in light rare earth elements and large ion lithophile elements and depletion in high field strength elements are observed. Mineralogical and geochemical evidence reveal that the late Mesozoic granites are highly fractionated I-type granites with fractional crystallization of feldspar, plagioclase and accessory minerals (e.g., apatite and titanite or magnetite). Based on the Hf composition, we suggest that the parental magmas of the ore-related plutons were derived from remelting of the Taihua and Xiong’er groups with minor contributions of mantle-derived materials and that the Laojunshan batholith was generated by the hybridization of ancient crust- (Kuanping group) and mantle-derived components. Collectively, the above arguments indicates a tectonic transition from compression to post-collisional extension during the late Mesozoic, that was likely triggered by the continental collision of the North China Block and the Yangtze Block, which generated numerous contemporaneous granites and Mo-W-Pb-Zn-Ag-Au poly-metallic deposits.

Keywords

geochemistry petrogenesis tectono-magmatic evolution Luanchuan district eastern Qinling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arth, J.G. and Hanson, G.N., 1975, Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochimica et Cosmochimica Acta, 39, 325–362.CrossRefGoogle Scholar
  2. Bao, Z.W., Wang, C.Y., Zhao, T.P., Li, C.J., and Gao, X.Y., 2014, Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt, Central China. Ore Geology Reviews, 57, 132–153.CrossRefGoogle Scholar
  3. Blichert-Toft, J. and Albarède, F., 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148, 243–258.CrossRefGoogle Scholar
  4. Cao, H.W., Zhang, S.T., Lin, J.Z., Zheng, L., Wu J.D., and Li, D., 2014, Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong county, Western Yunnan (China): Regional tectonic implications. Journal of Asian Earth Sciences, 81, 142–152.CrossRefGoogle Scholar
  5. Cao, H.W., Zhang, S.T., Santosh, M., Zheng, L., Tang, L., Li, D., Zhang, X.H., and Zhang, Y.H., 2015, The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages. Journal of Asian Earth Sciences, 111, 751–780.CrossRefGoogle Scholar
  6. Cao, H.W., Zou, H., Zhang, Y.H., Zhang, S.T., Zheng, L., Zhang, L.K., Tang, L., and Pei, Q.M., 2016a, Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geology Reviews, 78, 196–212.CrossRefGoogle Scholar
  7. Cao, H.H., Li, S.Z., Zhao, S.J., Yu, S., Li, X.Y., and Somerville, I.D., 2016b, Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean. Precambrian Research, 279, 1–16.CrossRefGoogle Scholar
  8. Chappell, B.W., 1999, Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46, 535–551.CrossRefGoogle Scholar
  9. Chappell, B.W. and White, A.J.R., 1992, I- and S-type granites in the Lachlan Fold Belt. Geological Society of America Special Papers, 272, 1–26.CrossRefGoogle Scholar
  10. Chappell, B.W. and White, A.J.R., 2001, Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489–499CrossRefGoogle Scholar
  11. Chen, Y.J., 2013, The geology and tectonic settings of China’s mineral deposits by Franco Pirajno. Geoscience Frontiers, 4, 477.CrossRefGoogle Scholar
  12. Chen Y.J. and Santosh, M., 2014, Triassic tectonics and mineral systems in the Qinling Orogen, central China. Geological Journal, 49, 338–358.CrossRefGoogle Scholar
  13. Chiaradia, M., 2009, Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology, 265, 468–487.CrossRefGoogle Scholar
  14. Clemens, J.D., 2003, S-type granitic magmas–petrogenetic issues, models and evidence. Earth-Science Reviews, 61, 1–18CrossRefGoogle Scholar
  15. Deng, X.H., Chen, Y.J., Santosh, M., and Yao, J.M., 2013, Re-Os geochronology, fluid inclusions and genesis of the 0.85 Ga Tumen molybdenite-fluorite deposit in Eastern Qinling, China: implications for pre-Mesozoic Mo enrichment and tectonic setting. Geological Journal, 48, 484–497.CrossRefGoogle Scholar
  16. Deng, X.H., Chen, Y.J., Santosh, M., Yao, J.M., and Sun, Y.L., 2016, Re- Os and Sr-Nd-Pb isotope constraints on source of fluids in the Zhifang Mo deposit, Qinling Orogen, China. Gondwana Research, 30, 132–143.CrossRefGoogle Scholar
  17. Deng, X.H., Santosh, M., Yao, J.M., and Chen, Y.J., 2014, Geology, fluid inclusions and sulphur isotopes of the Zhifang Mo deposit in Qinling Orogen, central China: A case study of orogenic-type Mo deposits. Geological Journal, 49, 515–533.CrossRefGoogle Scholar
  18. Diwu, C.R., Sun, Y., Zhao, Y., Liu, B.X., and Lai, S.C., 2014, Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling Complex, central China: Implications for the evolutionary history of the North Qinling Orogenic Belt. Geoscience Frontiers, 5, 499–513.CrossRefGoogle Scholar
  19. Dong, Y.P., Safonova, I., and Wang, T., 2016, Tectonic evolution of the Qinling orogen and adjacent orogenic belts. Gondwana Research, 30, 1–5.CrossRefGoogle Scholar
  20. Dong, Y.P. and Santosh, M., 2016, Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29, 1–40.CrossRefGoogle Scholar
  21. Dong, Y.P., Yang, Z., Liu, X.M., Sun, S.S., Li, W., Cheng, B., Zhang, F.F., Zhang, X.N., He, D.F., and Zhang, G.W., 2016, Mesozoic intracontinental orogeny in the Qinling Mountains, central China. Gondwana Research, 30, 144–158.CrossRefGoogle Scholar
  22. Dong, Y.P., Zhang, G.W., Neubauer, F., Liu, X.M., Genser, J., and Hauzenberger, C., 2011, Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41, 213–237.CrossRefGoogle Scholar
  23. Duan, S.G., Xue, C.J., Chi, G.X., Liu, G.Y., Yan, C.H., Feng, Q.W., and Song, Y.W., 2011, Ore geology, fluid inclusion, and S- and Pb-isotopic constraints on the genesis of the Chitudian Zn-Pb deposit, southern margin of the North China craton. Resource Geology, 61, 224–240.CrossRefGoogle Scholar
  24. Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J., and O’Reilly, S.Y., 2006, Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70, A158.CrossRefGoogle Scholar
  25. Gao, Y., Mao, J.W., Ye, H.S., Meng, F., and Li, Y.F., 2015, A review of the geological characteristics and geodynamic setting of the late Early Cretaceous molybdenum deposits in the East Qinling–Dabie molybdenum belt, East China. Journal of Asian Earth Sciences, 108, 81–96.CrossRefGoogle Scholar
  26. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., and Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM-MCICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133–147.CrossRefGoogle Scholar
  27. Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X.S., and Zhou, X.S., 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61, 237–269.CrossRefGoogle Scholar
  28. Harris, N.B., Pearce, J.A., and Tindle, A.G., 1986, Geochemical characteristics of collision-zone magmatism. Geological Society of London, Special Publications, 19, 67–81.CrossRefGoogle Scholar
  29. Han, Y.G., Wang, Y., Zhao, G.C., and Cao, Q.Y., 2014, Syn-tectonic emplacement of the Late Mesozoic Laojunshan granite pluton in the eastern Qinling, central China: An integrated fabric and geochronologic study. Journal of Structural Geology, 68, Part A, 1–15.CrossRefGoogle Scholar
  30. He, Y.H., Zhao, G.C., Sun, M., and Xia, X.P., 2009, SHRIMP and LAICP- MS zircon geochronology of the Xiong’er volcanic rocks: Implications for the Paleo–Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168, 213–222.CrossRefGoogle Scholar
  31. Huang, X.L., Niu, Y.L., Xu, Y.G., Yang, Q.J., and Zhong, J.W., 2010, Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: Implications for late Archean crustal accretion. Precambrian Research, 182, 43–56.CrossRefGoogle Scholar
  32. Janoušek, V., Finger, F., Roberts, M., Frýda, J., Pin, C., and Dolejš, D., 2004, Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Geological Society of America Special Papers, 389, 141–159.Google Scholar
  33. Kemp, A.I.S., Wormald, R.J., Whitehouse, M.J., and Price, R.C., 2005, Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora. southeastern Australia, Geology, 33, 797–800.Google Scholar
  34. King, P.L., White, A.J.R., Chappell, B.W., and Allen, C.M., 1997, Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38, 371–391.CrossRefGoogle Scholar
  35. Li, D., Han, J.W., Zhang, S.T., Yan, C.H., Cao, H.W., and Song, Y.W., 2015, Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis. Journal of Asian Earth Sciences, 111, 663–680.CrossRefGoogle Scholar
  36. Li, D., Zhang, S.T., Yan, C.H., Wang, G.W., Song, Y.W., Ma, Z.B., and Han, J.W., 2012a, Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt, East Qinling orogen, Central China. Journal of Geodynamics, 61, 94–104.CrossRefGoogle Scholar
  37. Li, J.W., Zhao, X.F., Zhou, M.F., Ma, C.Q., de Souza, Z.S., and Vasconcelos, P., 2009, Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157, 383–409.CrossRefGoogle Scholar
  38. Li, N., Chen, Y.J., Pirajno, F., Gong, H.J., Mao, S.D., and Ni, Z.Y., 2012b, LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: Implications for Mesozoic tectono-magmatic evolution. Lithos, 142–143, 34–47.CrossRefGoogle Scholar
  39. Li, S.Z., Kusky, T.M., Wang, L., Zhang, G.W., Lai, S.C., Liu, X.C., Dong, S.W., and Zhao, G.C., 2007, Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Research, 12, 121–143.CrossRefGoogle Scholar
  40. Li, S.Z., Suo, Y.H., Santosh, M., Dai, L.M., Liu, X., Yu, S., Zhao, S.J., and Jin, C., 2013, Mesozoic to Cenozoic intracontinental deformation and dynamics of the North China Craton. Geological Journal, 48, 543–560.CrossRefGoogle Scholar
  41. Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G.J., and Qi, C.S., 2007, U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96, 186–204.CrossRefGoogle Scholar
  42. Li, Y.F., Mao, J.W., Guo, B.J., Shao, Y.J., Fei, H.C., and Hu, H.B., 2004, Re-Os dating of molybdenite from the Nannihu Mo (-W) orefield in the East Qinling and its geodynamic significance. Acta Geologica Sinica (English Edition), 78, 463–470.CrossRefGoogle Scholar
  43. Li, Y.J., Liao, Z.T., and Ma, T.T., 2001, Tectonic evolution of East Qinling Orogenic Belt. Gondwana Research, 4, 683–684.CrossRefGoogle Scholar
  44. Liu, L., Liao, X.Y., Wang, Y.W., Wang C., Santosh, M., Yang, M., Zhang, C.L., and Chen, D.L., 2016, Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Science Reviews, 159, 58–81.CrossRefGoogle Scholar
  45. Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., and Wang, D.B., 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51, 537–571.CrossRefGoogle Scholar
  46. Ludwig, K.R., 1999, Isoplot/Ex Ver 2.06: a geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publications, 4, 70.Google Scholar
  47. Maniar, P.D. and Piccoli, P.M., 1989, Discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643.CrossRefGoogle Scholar
  48. Mao, J.W., Pirajno, F., Xiang, J.F., Gao, J.J., Ye, H.S., Li, Y.F., and Guo, B.J., 2011, Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: Characteristics and tectonic settings. Ore Geology Reviews, 43, 264–293.CrossRefGoogle Scholar
  49. Mao, J.W., Xie, G.Q., Bierlein, F., Qü, W.J., Du, A.D., Ye, H.S., Pirajno, F., Li, H.M., Guo, B.J., Li, Y.F., and Yang, Z.Q., 2008, Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72, 4607–4626.CrossRefGoogle Scholar
  50. Meng, F., 2010, The characteristics of the Laojunshan intrusive and mineralization, Western Henan Province. Master’s Thesis, China University of Geosciences (Beijing), Beijing, 84 p. (in Chinese with English abstract)Google Scholar
  51. Meng, Q.R. and Zhang, G.W., 2000, Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323, 183–196.CrossRefGoogle Scholar
  52. Miller, C.F., McDowell, S.M., and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31, 529–532.Google Scholar
  53. earce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.CrossRefGoogle Scholar
  54. Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.CrossRefGoogle Scholar
  55. Peng, P., Zhai, M.G., Ernst, R.E., Guo, J.H., Liu, F., and Hu, B., 2008, A 1.78 Ga large igneous province in the North China craton: The Xiong’er Volcanic Province and the North China dyke swarm. Lithos, 101, 260–280.CrossRefGoogle Scholar
  56. Roberts, M.P. and Clemens, J.D., 1993, Origin of high-potassium, talcalkaline, I-type granitoids. Geology, 21, 825–828.CrossRefGoogle Scholar
  57. Rollinson, H.R., 2014, Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, London, 352 p.Google Scholar
  58. Shi, Y., Yu, J.H., and Santosh, M., 2013, Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231, 19–60.CrossRefGoogle Scholar
  59. Söderlund, U., Patchett, P.J., Vervoort, J.D., and Isachsen, C.E., 2004, The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311–324.CrossRefGoogle Scholar
  60. Sun, S.S. and McDonough, W.F., 1989, Chemical and isopoic systematics of oceanic basalt: implications for mantle composition and process. Geological Society of London, Special Publication, 42, 313–345.CrossRefGoogle Scholar
  61. Tang, L., Santosh, M., and Dong, Y.P., 2015, Tectonic evolution of a complex orogenic system: evidence from the northern Qinling belt, central China. Journal of Asian Earth Sciences 113, 544–559.CrossRefGoogle Scholar
  62. Tang, L., Santosh, M., Dong, Y.P., Tsunogae, T., Zhang, S.T., and Cao, H.W., 2016, Early Paleozoic tectonic evolution of the North Qinling orogenic belt: Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite. Gondwana Research, 30, 48–64.CrossRefGoogle Scholar
  63. Wang, C.M., Cheng, Q.M., Zhang, S.T., Deng, J., and Xie, S.Y., 2008, Magmatic-hydrothermal superlarge metallogenic systems–A case study of the Nannihu ore Field. Journal of Earth Science, 19, 391–403.Google Scholar
  64. Wang, G.C., Jiang, Y.H., Liu, Z., Ni, C.Y., Qing, L., Zhang, Q., and Zhu, S.Q., 2016, Multiple origins for the Middle Jurassic to Early Cretaceous high-K calc-alkaline I-type granites in northwestern Fujian province, SE China and tectonic implications. Lithos, 246–247, 197–211.CrossRefGoogle Scholar
  65. Wang, G.W., Li, R.X., Carranza, E.J.M., Zhang, S.T., Yan, C.H., Zhu, Y.Y., Qu, J.N., Hong, D.M., Song, Y.W., Han, J.W., Ma, Z.B., Zhang, H., and Yang, F., 2015, 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geology Reviews, 71, 592–610.CrossRefGoogle Scholar
  66. Wang, X.L., Jiang, S.Z., Dai, B.Z., Griffin, W.L., Dai, M.N., and Yang, Y.H., 2011, Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190, 35–47.CrossRefGoogle Scholar
  67. Wang, X.L., Jiang, S.Y., Dai, B.Z., and Kern, J., 2013a, Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton: evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal, 48, 498–515.CrossRefGoogle Scholar
  68. Wang, X.S., Hu, R.Z., Bi, X.W., Leng, C.B., Pan, L.C., Zhu, J.J., and Chen, Y.W., 2014, Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208–209, 202–219.CrossRefGoogle Scholar
  69. Wang, X.X., Wang, T., Ke, C.H., Yang, Y., Li, J.B., Li, Y.H., Qi, Q.J., and Lv, X.Q., 2015, Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen, central China: Constraint on the basements of terranes and distribution of Mo mineralization. Journal of Asian Earth Sciences, 103, 169–183.CrossRefGoogle Scholar
  70. Wang, X.X., Wang, T., and Zhang, C.L., 2013b, Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72, 129–151.CrossRefGoogle Scholar
  71. Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419.CrossRefGoogle Scholar
  72. Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C., and Sun, D.Y., 2003a, Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos, 66, 241–273.CrossRefGoogle Scholar
  73. Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C., and Sun, D.Y., 2003b, Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67, 191–204.CrossRefGoogle Scholar
  74. Wu, Y.B. and Zheng, Y.F., 2013, Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hongán–Dabie–Sulu orogenic belt in central China. Gondwana Research, 23, 1402–1428.CrossRefGoogle Scholar
  75. Yang, F., Wang, G.W., Cao, H.W., Li, R.X., Tang, L., Huang, Y.F., Zhang, H., Xue, F., Jia, W.J., and Guo, N.N., 2016, Timing of formation of the Hongdonggou Pb-Zn polymetallic ore deposit, Henan Province, China: Evidence from Rb-Sr isotopic dating of sphalerites. Geoscience Frontiers, 2017, 605–616.Google Scholar
  76. Yang, J.H., Peng, J.T., Hu, R.Z., Bi, X.W., Zhao, J.H., Fu, Y.Z., and Shen, N.P., 2013a, Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China. Lithos, 177, 79–90.CrossRefGoogle Scholar
  77. Yang, Y., Chen, Y.J., Zhang, J., and Zhang, C., 2013, Ore geology, fluid inclusions and four-stage hydrothermal mineralization of the Shangfanggou giant Mo-Fe deposit in Eastern Qinling, central China. Ore Geology Reviews, 55, 146–161.CrossRefGoogle Scholar
  78. Yang, Y., Wang, X.X., Ke, C.H., and Li, J.B., 2012a, Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province. Geology in China, 39, 1525–1542. (in Chinese with Enligsh abstract)Google Scholar
  79. Yang, Y.F., Li, N., and Chen, Y.J., 2012b, Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geology Reviews, 46, 83–94.CrossRefGoogle Scholar
  80. Yin, J.Y., Chen, W., Xiao, W.J., Yuan, C., Zhang, B., Cai, K.D., and Long, X.P., 2016, Geochronology, petrogenesis, and tectonic significance of the latest Devonian–early Carboniferous I-type granites in the Central Tianshan, NW China. Gondwana Research, In Press.Google Scholar
  81. Yu, X.Q., Liu, J.L., Li, C.L., Chen, S.Q., and Dai, Y.P., 2013, Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: Constraints on the formation and evolution of the Trans-North China Orogen. Precambrian Research, 230, 31–44.CrossRefGoogle Scholar
  82. Zhang, H.H., Wang, F., Xu, W.L., Cao, H.H., and Pei, F.P., 2016, Petrogenesis of Early–Middle Jurassic intrusive rocks in northern Liaoning and central Jilin provinces, northeast China: Implications for the extent of spatial-temporal overprinting of the Mongol–Okhotsk and Paleo-Pacific tectonic regimes. Lithos, 256–257, 132–147.CrossRefGoogle Scholar
  83. Zhang, J.Y., Ma, C.Q., and She, Z.B., 2012, An Early Cretaceous garnetbearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geoscience Frontiers, 3, 635–646.CrossRefGoogle Scholar
  84. Zhang, Y.H., Zhang, S.T., Xu, M., Jiang, X.K., Li, J.J., Wang, S.Y., Li, D., Cao, H.W., Zou, H., and Fang, Y., 2015, Geochronology, geochemistry, and Hf isotopes of the Jiudinggou molybdenum deposit, Central China, and their geological significance. Geochemical Journal, 49, 321–342.CrossRefGoogle Scholar
  85. Zhao, G.C., He, Y.H., and Sun, M., 2009, The Xiong’er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo–Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16, 170–181.CrossRefGoogle Scholar
  86. Zhu, D.C., Mo, X.X., Wang, L.Q., Zhao, Z.D., Niu, Y.L., Zhou, C.Y., and Yang, Y.H., 2009, Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China Series D: Earth Sciences, 52, 1223–1239.CrossRefGoogle Scholar
  87. Zhu, L.M., Zhang, G.W., Guo, B., Lee, B., Gong, H.J., and Wang, F., 2010, Geochemistry of the Jinduicheng Mo-bearing porphyry and deposit, and its implications for the geodynamic setting in East Qinling, P.R. China. Chemie der Erde-Geochemistry, 70, 159–174.CrossRefGoogle Scholar
  88. Zhu, X.Y., Chen, F.K., Li, S.Q., Yang, Y.Z., Nie, H., Siebel, W., and Zhai, M.G., 2011, Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Research, 20, 194–204.CrossRefGoogle Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yunhui Zhang
    • 1
  • Huawen Cao
    • 2
  • Mo Xu
    • 1
  • Shouting Zhang
    • 3
  • Li Tang
    • 3
  • Shiyan Wang
    • 3
  • Qiuming Pei
    • 3
  • Guojun Cai
    • 1
  • Tong Shen
    • 1
  1. 1.State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionChengdu University of TechnologyChengdu, SichuanChina
  2. 2.Chengdu CenterChina Geological SurveyChengdu, SichuanChina
  3. 3.School of Earth Sciences and ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations