Advertisement

Geosciences Journal

, Volume 20, Issue 1, pp 13–26 | Cite as

Implication of the chemical index of alteration as a paleoclimatic perturbation indicator: an example from the lower Neoproterozoic strata of Aksu, Xinjiang, NW China

  • Haifeng DingEmail author
  • Dongsheng Ma
  • Chunyan Yao
  • Qizhong Lin
  • Linhai Jing
Article

Abstract

The Neoproterozoic successions in the Aksu region, NW China, which lies unconformably on the Precambrian Aksu Group basement, comprises the Qiaoenbrak, Yuermeinak, Sugetbrak, and Chigebrak formations (from bottom to top). The two lowermost units include two distinct glacial diamictites, which indicate distinct episodes of glaciations. We report the major and trace element (including rare earth element) data for the Qiaoenbrak, Yuermeinak, and Sugetbrak formations to identify the paleoclimatic perturbations. The chemical index of alteration (CIA) values show variations from Qiaoenbrak to Yuermeinak, then Sugetbrak formations. The diamictites have relatively lower chemical index of alteration values (45.23–59.64) than inter-, post- and non-glacial sediments (48.28–66.96). This result supported the condition that the diamictites underwent relatively weak chemical weathering from a dry-cold sedimentary environment, which is associated with the sedimentary facies description. The lower Neoproterozoic successions recoded at least two glaciations, one is Qiaoenbrak glaciation and the other is Yuermeinak glaciation.

Keywords

geochemistry Neoproterozoic glaciations palaeoclimate Aksu NW China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahlburg, H. and Dobrzinski, N., 2011, A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: Arnaud, E., Halverson, G.P., and Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, p. 81–92.Google Scholar
  2. Busfield, M.E. and Le Heron, D.P., 2014, Sequencing the Sturtian icehouse: dynamic ice behaviour in South Australia. Journal of the Geological Society, 171, 443–456.CrossRefGoogle Scholar
  3. Chen, Y., Xu, B., Zhan, S., and Li, Y.G., 2004, First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research, 133, 271–281.CrossRefGoogle Scholar
  4. Colin, C., Kissel, C., Blamart, D., and Turpin, L., 1998, Magnetic properties of sediments in the Bay of Bengal and the Andaman Sea: impact of rapid North Atlantic Ocean climatic events on the strength of the Indian monsoon. Earth and Planetary Science Letters, 160, 623–635.CrossRefGoogle Scholar
  5. Cox, R., Lowe, D.R., and Cullers, R.L., 1995, The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United-States. Geochimica et Cosmochimica Acta, 59, 2919–2940.CrossRefGoogle Scholar
  6. Cullers, R.L. and Berendsen, P., 1998, The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, USA. European Journal of Mineralogy, 10, 987–1002.CrossRefGoogle Scholar
  7. Fedo, C.M., Eriksson, K.A., and Krogstad, E.J., 1996, Geochemistry of shales from the Archean (similar to 3.0 Ga) Buhwa greenstone belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60, 1751–1763.CrossRefGoogle Scholar
  8. Fedo, C.M., Grant, G.M., and Nesbitt, H.W., 1997, Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Precambrian Research, 86, 201–223.CrossRefGoogle Scholar
  9. Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unraveling the Effects of Potassium Metasomatism in Sedimentary-Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23, 921–924.CrossRefGoogle Scholar
  10. Franzinelli, E. and Potter, P.E., 1983, Petrology, chemistry and texture of modern river sands, Amazon river system. Journal of Geology, 91, 23–39.CrossRefGoogle Scholar
  11. Gao, Z.J. and Qian, J.X., 1985, Sinian Glacial Deposits in Xinjiang, Northwest China. Precambrian Research, 29, 143–147.CrossRefGoogle Scholar
  12. Gao, Z.J., Wang, W.Y., Peng, C.W., Li, Y.A., and Xiao, B., 1986, The Sinian system on Aksu-Wushi region, Xinjiang, China. Xinjiang People’s Publishing House, Urumuqi, 184 p.Google Scholar
  13. Gao, Z.J., Wang, W.Y., Peng, C.W., Li, Y.A., and Xiao, B., 1987, The Sinian system of Xinjiang. Xinjiang People’s Publishing House, Urumqi, 173 p.Google Scholar
  14. Ghosh, S. and Sarkar, S., 2010, Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: Clues for provenance. Chemical Geology, 277, 78–100.CrossRefGoogle Scholar
  15. Goldberg, K. and Humayun, M., 2010, The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Parana Basin, Brazil. Palaeogeography Palaeoclimatology Palaeoecology, 293, 175–183.CrossRefGoogle Scholar
  16. Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., 2010, Neoproterozoic chemostratigraphy. Precambrian Research, 182, 337–350.CrossRefGoogle Scholar
  17. He, X.B., Xu, B., and Yuan, Z.Y., 2007, C-isotope composition and correlation of the Upper Neoproterozoic in Keping area, Xinjiang. Chinese Science Bulletin, 52, 504–511.CrossRefGoogle Scholar
  18. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998, A Neoproterozoic snowball earth. Science, 281, 1342–1346.CrossRefGoogle Scholar
  19. Hoffman, P.F. and Li, Z.X., 2009, A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography Palaeoclimatology Palaeoecology, 277, 158–172.CrossRefGoogle Scholar
  20. Hoffman, P.F. and Schrag, D.P., 2002, The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.CrossRefGoogle Scholar
  21. Huang, B.C., Xu, B., Zhang, C.X., Li, Y.A., and Zhu, R.X., 2005, Paleomagnetism of the Baiyisi volcanic rocks (ca. 740 Ma) of Tarim, Northwest China: A continental fragment of neoproterozoic Western Australia? Precambrian Research, 142, 83–92.CrossRefGoogle Scholar
  22. Huang, J., Feng, L.J., Lu, D.B., Zhang, Q.R., Sun, T., and Chu, X.L., 2014, Multiple climate cooling prior to Sturtian glaciations: Evidence from chemical index of alteration of sediments in South China. Scientific Reports, 4, 1–4.Google Scholar
  23. Johnsson, M.J., Stallard, R.F., and Lundberg, N., 1991, Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Columbia. Geological Society of America Bulletin, 103, 1622–1647.CrossRefGoogle Scholar
  24. Johnsson, M.J., Stallard, R.F., and Meade, R.H., 1988, First-cycle quartz arenites in the Orinoco River basin, Venezuela and Columbia. Journal of Geology, 96, 263–277.CrossRefGoogle Scholar
  25. Kasemann, S.A., von Strandmann, P.A.E.P., Prave, A.R., Fallick, A.E., Elliott, T., and Hoffmann, K.H., 2014, Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes. Earth and Planetary Science Letters, 396, 66–77.CrossRefGoogle Scholar
  26. Lee, I.Y., 2002, Provenance derived from the geochemistry of late Paleozoic-early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149, 219–235.CrossRefGoogle Scholar
  27. Li, Q.G., Liu, S.W., and Han, B.F., 2004, The geochemical character of Sinian tillite in Kuruktag, Xinjiang and its implications to provenance (in Chinese). Progress in Natural Science, 14, 999–1005.Google Scholar
  28. Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160, 179–210.CrossRefGoogle Scholar
  29. Long, X.P., Sun, M., Yuan, C., Xiao, W.J., and Cai, K., 2008, Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208, 88–100.CrossRefGoogle Scholar
  30. Maslov, A.V., 2010, Glaciogenic and related sedimentary rocks: Main lithochemical features. Communication 1. Late Archean and Proterozoic. Lithology and Mineral Resources, 45, 377–397.CrossRefGoogle Scholar
  31. McLennan, S.M., 1993, Weathering and Global Denudation. Journal of Geology, 101, 295–303.CrossRefGoogle Scholar
  32. McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Paper, 284, 21–40.CrossRefGoogle Scholar
  33. McLennan, S.M. and Taylor, S.R., 1980, Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature, 285, 621–624.CrossRefGoogle Scholar
  34. McLennan, S.M. and Taylor, S.R., 1991, Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1–21.CrossRefGoogle Scholar
  35. Nesbitt, H.W., 1979, Mobility and Fractionation of Rare-Earth Elements during Weathering of a Granodiorite. Nature, 279, 206–210.CrossRefGoogle Scholar
  36. Nesbitt, H.W., Markovics, G., and Price, R.C., 1980, Chemical Processes Affecting Alkalis and Alkaline-Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44, 1659–1666.CrossRefGoogle Scholar
  37. Nesbitt, H.W. and Young, G.M., 1982, Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299, 715–717.CrossRefGoogle Scholar
  38. Nesbitt, H.W. and Young, G.M., 1984, Prediction of Some Weathering Trends of Plutonic and Volcanic-Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.CrossRefGoogle Scholar
  39. Nesbitt, H.W. and Young, G.M., 1989, Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97, 129–147.CrossRefGoogle Scholar
  40. Nesbitt, H.W. and Young, G.M., 1996, Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 43, 341–358.CrossRefGoogle Scholar
  41. Panahi, A. and Young, G.M., 1997, A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland. Precambrian Research, 85, 81–96.CrossRefGoogle Scholar
  42. Potter, P.E., 1978, Petrology and chemistry of modern big river sands. Journal of Geology, 86, 423–449.CrossRefGoogle Scholar
  43. Rieu, R., Allen, P.A., Plotze, M., and Pettke, T., 2007a, Climatic cycles during a Neoproterozoic “snowball” glacial epoch. Geology, 35, 299–302.CrossRefGoogle Scholar
  44. Rieu, R., Allen, P.A., Plotze, M., and Pettke, T., 2007b, Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, south Oman: Implications for paleoweathering conditions. Precambrian Research, 154, 248–265.CrossRefGoogle Scholar
  45. Scheffler, K., Buehmann, D., and Schwark, L., 2006, Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies–Response to climate evolution and sedimentary environment. Palaeogeography Palaeoclimatology Palaeoecology, 240, 184–203.CrossRefGoogle Scholar
  46. Scheffler, K., Hoernes, S., and Schwark, L., 2003, Global changes during Carboniferous-Permian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies. Geology, 31, 605–608.CrossRefGoogle Scholar
  47. Taylor, S.R. and Mclennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 p.Google Scholar
  48. Turner, S.A., 2010, Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China. Precambrian Research, 181, 85–96.CrossRefGoogle Scholar
  49. Weaver, C.E., 1989, Clays, muds, and shales. Elsevier, Amsterdam, 819 p.Google Scholar
  50. Wen, B., Li, Y.X., and Zhu, W.B., 2012, Peleomagnetism of the Neoproterozoic Diamictites of the Qiaoenbrak Formation in the Aksu Area, NW China: Constraints on the Paleogeographic Position of the Tarim Block. Precambrian Research, 226, 75–90.CrossRefGoogle Scholar
  51. Xiao, S.H., Bao, H.M., Wang, H.F., Kaufman, A.J., Zhou, C.M., Li, G.X., Yuan, X.L., and Ling, H.F., 2004, The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambrian Research, 130, 1–26.CrossRefGoogle Scholar
  52. Xu, B., Jian, P., Zheng, H.F., Zou, H.B., Zhang, L.F., and Liu, D.Y., 2005, U-Pb zircon geochronology and creochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research, 136, 107–123.CrossRefGoogle Scholar
  53. Xu, B., Xiao, S.H., Zou, H.B., Chen, Y., Li, Z.X., Song, B., Liu, D.Y., Zhou, C.M., and Yuan, X.L., 2009, SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 168, 247–258.CrossRefGoogle Scholar
  54. Xu, B., Zheng, H.F., Yao, H.T., and Li, Y.G., 2003, C-isotope composition and significance of the Sinian on the Tarim plate. Chinese Science Bulletin, 48, 385–389.CrossRefGoogle Scholar
  55. Young, G.A., Minter, W.L., and Theron, J.N., 2004, Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa. Palaeogeography Palaeoclimatology Palaeoecology, 214, 323–345.CrossRefGoogle Scholar
  56. Young, G.M., 1999, Some aspects of the geochemistry, provenance and palaeoclimatology of the Torridonian of NW Scotland. Journal of the Geological Society, 156, 1097–1111.CrossRefGoogle Scholar
  57. Young, G.M., 2002a, Geochemical investigation of a Neoproterozoic glacial unit: The Mineral Fork Formation in the Wasatch Range, Utah. Geological Society of America Bulletin, 114, 387–399.CrossRefGoogle Scholar
  58. Young, G.M., 2002b, Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate. Journal of African Earth Sciences, 35, 451–466.CrossRefGoogle Scholar
  59. Young, G.M. and Nesbitt, H.W., 1999, Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach. Geological Society of America Bulletin, 111, 264–274.CrossRefGoogle Scholar
  60. Zhan, S., Chen, Y., Xu, B., Wang, B., and Faure, M., 2007, Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis. Precambrian Research, 154, 143–158.CrossRefGoogle Scholar
  61. Zheng, B.H., Zhu, W.B., Jahn, B.M., Shu, L.S., Zhang, Z.Y., and Su, J.B., 2010, Subducted Precambrian oceanic crust: geochemical and Sr-Nd isotopic evidence from metabasalts of the Aksu blueschist, NW China. Journal of the Geological Society, 167, 1161–1170.CrossRefGoogle Scholar
  62. Zhu, W.B., Zheng, B.H., Shu, L.S., Ma, D.S., Wu, H.L., Li, Y.X., Huang, W.T., and Yu, J.J., 2011, Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U-Pb ages and geochemical data. Precambrian Research, 185, 215–230.CrossRefGoogle Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haifeng Ding
    • 1
    Email author
  • Dongsheng Ma
    • 2
  • Chunyan Yao
    • 3
  • Qizhong Lin
    • 1
  • Linhai Jing
    • 1
  1. 1.Institute of Remote Sensing and Digital Earth, Key Laboratory of Digital Earth ScienceChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and EngineeringNanjing UniversityNanjingChina
  3. 3.Nanjing Institute of Geology and Mineral ResourcesNanjingChina

Personalised recommendations