Geosciences Journal

, Volume 14, Issue 4, pp 423–442 | Cite as

The role of geosciences in the assessment of low-temperature geothermal resources (N-Portugal): a review

  • José M. Marques
  • P. M. Carreira
  • J. E. Marques
  • H. I. Chaminé
  • P. E. Fonseca
  • F. A. Monteiro Santos
  • H. G. M. Eggenkamp
  • J. Teixeira


The aim of this paper is to review the results of the assessment of low-temperature geothermal resources (issue temperatures between 41 and 77 °C) that occur in the Portuguese mainland. For this purpose, a multidisciplinary approach, including geologic, tectonic, geochemical, geophysical and isotopic (δ2H, δ18O, δ13C, 3H and 14C) techniques, was applied in order to update local and/or regional conceptual circulation models. Three case studies of N-Portugal are presented and discussed. This paper describes different low-temperature geothermal waters presenting similar hydrogeological conceptual models but rather different geochemical signatures (e.g., HCO3-Na with pH ≈ 8, HCO3/Na/CO2-rich with pH ≈ 7 and HCO3-Na with pH ≈ 9, type waters). In fact, in the studied low-temperature geothermal systems, local/regional high altitude sites associated with highly fractured rocks play an important role in conducting the infiltrated meteoric waters towards the discharge zones near the Spas. The discharge zones are mainly related to the intersection of major regional fault lineaments (and conjugate structures), responsible for creating the mineral waters ascent. In some cases, geochemical and isotopic data point out to the existence of anthropogenic contamination of some geothermal spring waters related to the intense use of fertilizers in areas of widespread agricultural practices.

Key words

geothermal waters geochemistry isotopes geophysics N-Portugal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aires-Barros, L., Graça, R.C., and Marques, J.M., 1994, The low temperature geothermal system of Chaves (Northern Portugal): a geochemical approach. Document du Bureau de Recherches Géologiques et Minières, 230, 67–73.Google Scholar
  2. Aires-Barros, L., Marques, J.M., and Graça, R.C., 1995, Elemental and isotopic geochemistry in the hydrothermal area of Chaves / Vila Pouca de Aguiar (Northern Portugal). Environmental Geology, 25, 232–238.CrossRefGoogle Scholar
  3. Aires-Barros, L., Marques, J.M., Graça, R.C., Matias, M.J., Weijden, C.H. van Der, Kreulen, R., and Eggenkamp, H.G.M., 1998, Hot and cold CO2-rich mineral waters in Chaves geothermal area (Northern Portugal). Geothermics, 27, 89–107.CrossRefGoogle Scholar
  4. Almeida, F.M., 1982, New geotermometric data on Chaves and S. Pedro do Sul waters. Comunicações dos Serviços Geológicos de Portugal, 68, 179–190. (in Portuguese).Google Scholar
  5. Andrade, M.P.L., 2003, Isotopic geochemistry and thermomineral waters. Contribution of Sr (87Sr/86Sr) and Cl (37Cl/35Cl) isotopes to the elaboration of circulation models. The case of some CO2-rich waters from N Portugal. MSc Thesis, Technical University of Lisbon (IST), 104 p. (in Portuguese with English abstract).Google Scholar
  6. Arnórsson, S., 1975, Application of the silica geothermometer in low-temperature hydrothermal areas in Iceland. American Journal of Science, 275, 763–784.CrossRefGoogle Scholar
  7. Arthaud, F. and Matte, Ph., 1975, The southwestern European Late Variscan strike-slip shear faults: geometric pattern and deformation conditions. Tectonophysics, 25, 139–171. (in French with English abstract).CrossRefGoogle Scholar
  8. Baptista, J., Coke, C., Dias, R., and Ribeiro, A., 1993, Tectonics and geomorphology of Pedras Salgadas region and associated mineral springs. In: Chambel, A. (ed.), Comunicações da XII Reunião de Geologia do Oeste Peninsular, Évora University, 1, 125–139. (in Portuguese).Google Scholar
  9. Baptista, J., Cabral, J., and Ribeiro, A., 1998, Seismotectonics of Chaves and Moledo mineral springs in Penacova-Régua-Verin Fault Zone. In: Azerêdo, A. (ed.), Actas do V Congresso Nacional de Geologia, Comunicações do Instituto Geológico e Mineiro, Lisbon, 84, 69–72.Google Scholar
  10. Bergfeld, D., Goff, F., and Janik, C.J., 2001, Carbon isotope systematics and CO2 sources in the Geysers-Clear Lake region, northern California, USA. Geothermics, 30, 303–331.CrossRefGoogle Scholar
  11. Bernardo de Sousa, M. and Sequeira, A.J.D., 1989, Geological report on the Alijó Sheet No. 10-D (1:50,000). Portuguese Geological Survey, Lisbon, 59 p. (in Portuguese).Google Scholar
  12. Cabral, J., 1989, An example of intraplate neotectonic activity Vilariça Basin, Northeast Portugal. Tectonics, 8, 285–303.CrossRefGoogle Scholar
  13. Cabral, J., 1995, Neotectonics in Portuguese mainland. Memórias do Instituto Geolológico e Mineiro, Lisbon, 31, 1–265. (in Portuguese with English abstract).Google Scholar
  14. Carreira, P.M., Barbosa, T., Valério, P., and Araújo, M.F., 2003, Tritium values in precipitation waters in Portuguese mainland: variability and constraint factors. In: Proceedings of Resumos do IV Congresso Ibérico de Geoquímica. XIII Semana de Geoquímica, 353–355. (in Portuguese).Google Scholar
  15. Carreira, P.M., Marques, J.M., Andrade, M., and Nunes, D., 2004, Groundwater flow patterns in Caldas de Monção thermomineral systems evaluated from isotopic and geochemical data — NW Portugal. In: UNESCO-IAEA (eds.), Proceedings of the International Workshop on the Application of Isotopes in Hydrological and Environmental Studies, 47.Google Scholar
  16. Carreira, P.M., Marques, J.M., Carvalho, M.R., Monteiro Santos, F.A., Matias, H., Luzio, R., and Nunes, D., 2006, Fluid/mineral equilibrium calculations and chemical geothermometry of Monção thermal waters (NW-Portugal): a tool to estimate the deep thermal waters composition. In: Bureau de Recherches Géologiques et Minières (ed.), Abstracts of the International Symposium on Aquifer Systems Management (+ CD with Full Texts), Theme 4, 4–15.Google Scholar
  17. Carreira, P.M., Marques, J.M., Carvalho, M.R., Capasso, G., Grassa, F., Antunes da Silva, M., and Matias, M.J., 2007, Genesis of CO2-rich mineral waters (N-Portugal) inferred by geochemistry and isotopes ratios in water and gas phases. In: Ribeiro, L., Chambel, A., and Condesso de Melo, T. (eds.), Abstract Book of the XXXV IAH Congress, International Association of Hydro-geologists, Groundwater and Ecosystems, 549–550.Google Scholar
  18. Carreira, P.M., Marques, J.M., Graça, R.C., and Aires-Barros, L., 2008, Radiocarbon application in dating “complex” hot and cold CO2-rich mineral water systems: a review of case studies ascribed to the northern Portugal. Applied Geochemistry, 23, 2817–2828.CrossRefGoogle Scholar
  19. Carvalho, J.M., 1996, Mineral water exploration and exploitation at the Portuguese Hercynian Massif. Environmental Geology, 27, 252–258.CrossRefGoogle Scholar
  20. Carvalho, J.M., Chaminé, H.I., Afonso, M.J., Espinha Marques, J., Medeiros, A., Garcia, S., Gomes, A., Teixeira, J., and Fonseca, P.E., 2005, Productivity and water costs in fissured-aquifers from the Iberian crystalline basement (Portugal): hydrogeological constraints. In: López-Geta, J.A., Pulido Bosch, A., and Baquero Úbeda, J.C. (eds.), Water, Mining and Environment, Book Homage to Professor Rafael Fernández Rubio, Instituto Geológico y Minero de España, Madrid, 193–207.Google Scholar
  21. Clarke, I.D. and Fritz, P., 1997, Environmental isotopes in hydrogeology. Lewis Publishers, New York, 327 p.Google Scholar
  22. Craig, H., 1961, Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133, 1833–1834.CrossRefGoogle Scholar
  23. Craig, H., 1963, The isotopic geochemistry of water and carbon in geothermal areas. In: Tongiorgi, E. (ed.), Nuclear Geology in Geothermal Areas, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, 17 p.Google Scholar
  24. D.G.R.A.H, 1986, Hydrologic papers on the main river waters of Portuguese mainland. Directorate General of Water Resources, Lisbon, 569 p. (in Portuguese).Google Scholar
  25. Dickson, M.H. and Fanelli, M., 2003, Geothermal background. In: Dickson, M.H. and Fanelli, M. (eds.), Geothermal Energy, Utilization and Technology, UNESCO, Paris, 1–25.Google Scholar
  26. Duque, R., Monteiro Santos, F.A., and Mendes-Victor, L.A., 1998, Heat flow and deep temperatures in the Chaves Geothermal system, northern Portugal. Geothermics, 27, 75–87.CrossRefGoogle Scholar
  27. Ellis, A.J., 1970, Quantitative interpretation of chemical characteristics of geothermal systems. Geothermics, Special Issue, 2, 516–528.CrossRefGoogle Scholar
  28. Epstein, S. and Mayeda, T., 1953, Variation of 18O content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213–224.CrossRefGoogle Scholar
  29. Espinha Marques, J., Marques, J.M., Chaminé, H.I., Gomes, A.A., Fonseca, P.E., Carvalho, J.M., Carreira, P.M., Graça, R.C., Aires-Barros, L., and Borges, F.S., 2003, Poço Quente thermal spring (Granjão-Caldas do Moledo, Northern Portugal): morphostructure, geochemistry and hydrogeology. Cadernos Laboratorio Xeolóxico de Laxe, 28, 147–172.Google Scholar
  30. Forster, C. and Smith, L., 1988, Groundwater flow systems in mountainous terrain 2: controlling factors. Water Resources Research, 24, 1011–1023.CrossRefGoogle Scholar
  31. Forster, C. and Smith, L., 1989, The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. Journal of Geophysical Research, 94, 9439–9451.CrossRefGoogle Scholar
  32. Fouillac, C., 1983, Chemical geothermometry in CO2-rich thermal waters. Example of the French Massif Central. Geothermics, 12, 146–160.Google Scholar
  33. Fouillac, C. and Michard, G., 1981, Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10, 55–70.CrossRefGoogle Scholar
  34. Fournier, R.O., 1977, Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5, 41–50.CrossRefGoogle Scholar
  35. Fournier, R.O. and Rowe, J.J., 1996, Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264, 685–697.CrossRefGoogle Scholar
  36. Fournier, R.O. and Truesdell, A.H., 1973, An empirical Na-K-Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta, 37, 1255–1275.CrossRefGoogle Scholar
  37. Fournier, R.O. and Potter II, R.W., 1979, Magnesium correction to the Na-K-Ca chemical geothermometer. Geochimica et Cosmochimica Acta, 43, 1543–1550.CrossRefGoogle Scholar
  38. Friedman, I., 1953, Deuterium content of natural waters and other substances. Geochimica et Cosmochimica Acta, 4, 89–103.CrossRefGoogle Scholar
  39. Giggenbach, W.F., 1988, Geothermal solute equilibria — Derivation of Na-K-Ca-Mg geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765.CrossRefGoogle Scholar
  40. Griffith, D.H. and Barker, R.D., 1993, Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics, 29, 211–226.CrossRefGoogle Scholar
  41. Haenel, R. and Hurter, S., 2002, Atlas of geothermal resources in Europe. Commission of the European Communities, Brussels, Luxemburg, 91 p. and 89 plates.Google Scholar
  42. I.A.E.A., 1976, Procedure and technique critique for tritium enrichment by electrolysis at IAEA laboratory. Technical Procedure No. 19, International Atomic Energy Agency, Vienna.Google Scholar
  43. I.A.E.A., 1981, Stable Isotope Hydrology. Deuterium and Oxygen-18 in the Water Cycle. IAEA, Vienna. Technical Reports Series, 210, 340 p.Google Scholar
  44. Loke, M.H. and Barker, R.D., 1996, Rapid least-squares inversion of apparent resistivity pseudosections by a quasi -Newton method. Geophysical Prospecting, 44, 131–152.CrossRefGoogle Scholar
  45. López, D.L. and Smith, L., 1995, Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resources Research, 31, 1489–1503.CrossRefGoogle Scholar
  46. Loureiro, J.J.M., Macedo, M.E.Z., Almeida, M.C.L., and Martins, J.C.S., 1986, The catchment of Douro River. In: D.G.R.A.H (ed.), Hydrologic papers on the main river waters of Portuguese mainland, 147–205. (in Portuguese).Google Scholar
  47. Mahon, W.A.J., 1966, Silica in hot water discharged from drillholes at Wairakei, New Zealand. New Zealand Journal of Science, 9, 135–144.Google Scholar
  48. Marini, L. and Susangkyono, A.E., 1999, Fluid geochemistry of Ambon Island (Indonesia). Geothermics, 28, 189–204.CrossRefGoogle Scholar
  49. Marques, J.M., Carreira, P.M., Aires-Barros, L., and Graça, R.C., 1998, About the origin of CO2 in some HCO3/Na/CO2-rich Portuguese mineral waters. Geothermal Resources Council Transactions, 22, 113–117.Google Scholar
  50. Marques, J.M., Aires-Barros, L., and Graça, R.C., 1999a, Geochemical and isotopic features of hot and cold CO2-rich mineral waters of northern Portugal: a review and reinterpretation. Bulletin d’Hydrogéologie, 17, 175–183.Google Scholar
  51. Marques, J.M., Aires-Barros, L., and Graça, R.C., 1999b, Isotopic and chemical signatures of low-temperature sulphurous mineral waters (northern Portugal): preliminary results. Geothermal Resources Council Transactions, 23, 327–332.Google Scholar
  52. Marques, J.M., Carreira, P.M., Aires-Barros, L., and Graça, R.C., 2000, Nature and role of CO2 in some hot and cold HCO3/Na/CO2-rich Portuguese mineral waters: a review and reinterpreta tion. Environmental Geology, 40, 53–63.CrossRefGoogle Scholar
  53. Marques, J.M., Monteiro Santos, F.A., Graça, R.C., Castro, R., Aires-Barros, L., and Mendes Victor, L., 2001, A geochemical and geophysical approach to derive a conceptual circulation model of CO2-rich mineral waters: a case study of Vilarelho da Raia, northern Portugal. Hydrogeology Journal, 9, 584–596.CrossRefGoogle Scholar
  54. Marques, J.M., Espinha Marques, J., Carreira, P.M., Graça, R.C., Aires-Barros, L., Carvalho, J.M., Chaminé, H.I., and Borges, F.S., 2003, Geothermal fluids circulation at Caldas do Moledo area, Northern Portugal: geochemical and isotopic signatures. Geofluids, 3, 189–201.CrossRefGoogle Scholar
  55. Marques, J.M., Monteiro Santos, F.A., Andrade M., Carreira, P.M., Andrade Afonso, A., Dupis, A., Graça, R.C., Aires-Barros, L.A., and Mendes Victor, L.A., 2005, Conceptual modelling of the nature of complex thermomineral systems/CO2-rich waters (N-Portugal): a review on the geochemical and geophysical approaches. Geothermal Resources Council Transactions, 29, 277–281.Google Scholar
  56. Marques, J.M., Andrade, M., Carreira, P.M., Eggenkamp, H.G.M., Graça, R.C., Aires-Barros, L., and Antunes da Silva M., 2006, Chemical and isotopic signatures of HCO3/Na/CO2-rich geofluids, North Portugal. Geofluids, 6, 273–287.CrossRefGoogle Scholar
  57. Monteiro Santos, F.A., Dupis, A., Andrade Afonso, A.R., and Mendes-Victor, L.A., 1995, Magnetotelluric observations over the Chaves geothermal field (NE Portugal) — preliminary results. Physics of the Earth and Planetary Interiors, 91, 203–211.CrossRefGoogle Scholar
  58. Monteiro Santos, F.A., Dupis, A., Andrade Afonso, A.R., and Mendes-Victor, L.A., 1996, An audiomagnetotelluric survey over the Chaves geothermal field (NE Portugal). Geothermics, 25, 389–406.CrossRefGoogle Scholar
  59. Monteiro Santos, F.A., Andrade Afonso, A.R., and Mendes-Victor, L.A., 1997, A study of Chaves geothermal field using 3D resistivity modelling. Journal of Applied Geophysics, 37, 85–102.CrossRefGoogle Scholar
  60. Moreira, A. and Simões, M., 1988, Geological report on the Arcos de Valdevez Sheet No. 1-D (1:50,000). Portuguese Geological Survey, Lisbon, 48 p. (in Portuguese).Google Scholar
  61. Nascimento, I.B., 2000, Contribution to the knowledge of ground-waters from Monção region. MEng Thesis, Technical University of Lisbon, Instituto Superior Técnico, 92 p. (in Portuguese with English abstract).Google Scholar
  62. Navas, J.R., 1978, Geological Map of Spain, Salvatierra de Miño Sheet (1:50,000) 262/5-12. Geological and Mining Institute of Spain. (in Spanish).Google Scholar
  63. Oliveira, J.T., Pereira, E., Ramalho, M., Antunes, M.T., and Monteiro, J.H., 1992, Geological Map of Portugal (1: 500,000), 5th edition, Portuguese Geological Survey, Lisbon. (in Portuguese).Google Scholar
  64. Pedrosa, M.Y., 1999, Hydrogeological Map of Portugal (1: 200,000). Report on the Sheet 1, Mining and Geological Institute, Department of Hydrogeology, 70 p. (in Portuguese).Google Scholar
  65. Pérez-Alberti, A., García-García, H., and Gomes A., 2010, The terrace staircase in the lower section of the Miño river near Ourense (Galicia, Spain): climate variability or tectonic dynamic? In: Proceedings of FLAG’2010 Biennial Meeting on Long term river evolution and fluvial dynamics, Vila Velha de Rodão, p. 11.Google Scholar
  66. Pérez, N.M., Nakai, S., Wakita, H., Albert-Bertrán, J.F., and Redondo, R., 1996, Preliminary results on 3He/4He isotopic ratios in terrestrial fluids from Iberian Peninsula: seismoctectonic and neotectonic implications. Geogaceta, 20, 830–833.Google Scholar
  67. Pereira, E., Ribeiro, A., Marques, F., Munhá, J., Castro, P., Meireles, C., Ribeiro, M.A., Pereira, D., Noronha, F., and Ferreira, N., 1989, Geological Map of Portugal (1:/200,000), sheet 2, Portuguese Geological Survey, Lisbon. (in Portuguese).Google Scholar
  68. Portugal Ferreira, M., Sousa Oliveira, A., and Trota A.N., 1992, Chaves geothermal pole. Geological Survey, I and II. Joule I Program, DGXII, CEE. UTAD (University of Trás-os-Montes and Alto Douro, Portugal), Internal Report, 44 p.Google Scholar
  69. Ribeiro, M.L. and Moreira, A., 1986, Geological Report on the Monção Sheet No. 1-B (1:50,000). Portuguese Geological Survey, Lisbon, 46 p. (in Portuguese).Google Scholar
  70. Ribeiro, A., Kullberg, M.C., Kullberg, J.C., Manuppella, G., and Phipps, S., 1990, A review of Alpine tectonics in Portugal: foreland detachment in basement and cover rocks. Tectonophysics, 184, 357–366.CrossRefGoogle Scholar
  71. Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca, P.E., Araújo, A., Oliveira, J.T., Romão, J., Chaminé, H.I., Coke, C., and Pedro, J., 2007, Geodynamic evolution of the SW Europe Variscides. Tectonics, 26, TC6009, DOI: 10.1029/2006TC002058.CrossRefGoogle Scholar
  72. Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R., 1993, Isotopic patterns in modern global precipitation. American Geophysical Union, Geophysical Monograph, 78, Climate Change in Continental Isotopic Records, 1–36.Google Scholar
  73. Salem, O., Visser, J.M., Deay, M., and Gonfiantini, R., 1980. Groundwater flow patterns in western Lybian Arab Jamahitiya evaluated from isotope data. In: I.A.E.A (ed.), Arid zone hydrology: investigations with isotope techniques, 165–179.Google Scholar
  74. Smith, L. and Chapman, D.S., 1983. On the thermal effects of groundwater flow: 1. Regional scale systems. Journal of Geophysical Research, 88, No. B1, 593–608.CrossRefGoogle Scholar
  75. Sousa Oliveira, A. and Portugal Ferreira, M.R., 1995, Structural control of the hydromineral springs from Pedras Salgadas region (Vila Pouca de Aguiar — Northern Portugal). Memória, Porto University (mineralogy-geology laboratory and museum), 4, 485–489. (in Portuguese).Google Scholar
  76. Sousa Oliveira, A. and Portugal Ferreira M.R., 1996, The structure of the cross graben — horst system of the Pedras Salgadas — Vidago region (northern Portugal): framework of the associated hydromineral springs. In: Proceedings of the 3rd Congresso da Água / VII SILUBESA, Lisboa, Portugal, 3, 123–130 (in Portuguese).Google Scholar
  77. Teixeira, C., Fernandes, A.P., and Peres, A., 1967, Geological report on the Peso da Régua Sheet No. 10-C (1:50,000). Portuguese Geological Survey, Lisbon, 60 p. (in Portuguese).Google Scholar
  78. Teixeira, C. and Cândido de Medeiros, A., 1974, Geological report on the Chaves Sheet No. 6-B (1:50,000). Portuguese Geological Survey, Lisbon, 35 p. (in Portuguese).Google Scholar
  79. Truesdell, A.H., 1975, Geochemical techniques in exploration. In: Proceedings of the 2nd United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, 1, 53–79.Google Scholar
  80. Truesdell, A.H. and Hulston, J.R., 1980, Isotopic evidence on environments of geothermal systems. In: Fritz, P. and Fontes, J.Ch. (eds.), Handbook of Environmental Isotope Geochemistry. The Terrestrial Environment, Vol. 1, 179–226.Google Scholar
  81. Vicente, G. and Vegas, R., 2009, Large-scale distributed deformation controlled topography along the western Africa Eurasia limit: tectonic constraints. Tectonophysics, 474, 124–143CrossRefGoogle Scholar
  82. Welch, A.H., Sorey, M.L., and Olmsted F.H., 1981, The hydrothermal system in southern Grass Valley, Pershing County, Nevada. U.S. Geological Survey, Open-File Report, 81-915.Google Scholar
  83. Zhdanov, M.S. and Keller, G.V., 1994, Electrical methods in geophysical exploration. Amsterdam, Elsevier, 929 p.Google Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • José M. Marques
    • 1
  • P. M. Carreira
    • 2
  • J. E. Marques
    • 3
  • H. I. Chaminé
    • 4
    • 5
  • P. E. Fonseca
    • 6
  • F. A. Monteiro Santos
    • 7
  • H. G. M. Eggenkamp
    • 8
  • J. Teixeira
    • 9
    • 10
  1. 1.Centre of Petrology and Geochemistry (CEPGIST)Technical University of Lisbon (IST)LisbonPortugal
  2. 2.Nuclear and Technological Institute (ITN)SacavémPortugal
  3. 3.Centre and Department of Geology, Faculty of SciencesUniversity of Porto4169-007Portugal
  4. 4.Laboratory of Cartography and Applied Geology, Institute of Engineering of PortoISEPPortoPortugal
  5. 5.Centre GeoBioTecUniversity of AveiroAveiroPortugal
  6. 6.Centre and Department of Geology, Faculty of SciencesUniversity of LisbonLisbonPortugal
  7. 7.Centre of Geophysics (IDL)University of LisbonLisbonPortugal
  8. 8.Centre of Petrology and Geochemistry (CEPGIST)Technical University of Lisbon (IST)LisbonPortugal
  9. 9.Laboratory of Cartography and Applied Geology, Institute of Engineering of PortoISEPPortoPortugal
  10. 10.Centre GeoBioTecUniversity of AveiroAveiroPortugal

Personalised recommendations