Advertisement

Geosciences Journal

, 12:25 | Cite as

High resolution stable isotope records of sclreractinian corals near Ishigaki Island: Their implication as a potential paleoclimatic recorder in middle latitude regions

  • Michiyo Shimamura
  • Kiseong HyeongEmail author
  • Chan Min Yoo
  • Tsuyoshi Watanabe
  • Tomohisa Irino
  • Hoi-Soo Jung
Article

Abstract

We propose skeletal δ18O of Platygyra, a hermatypic reef building massive coral, as a potential paleo-SST proxy in midlatitude regions, where the commonly used massive Porites corals are rare. Skeletal δ18O ratio (δ18Oc) of a Platygyra and Porites corals collected from Ishigaki Island, Japan, shows a clear seasonality corresponding to SST variation. The temperature dependence of the Platygyra coral was estimated, for the first time with appropriate sampling resolution, at −0.219‰/°C (T = −4.57δ18Oc + 2.65, r2=0.96). Massive Platygyra colonies show a wide distribution from the tropics to mid-latitudes further northwards than Porites. Platygyra’s adaptation to colder water temperatures and strong temperature dependence of δ18Oc suggest its application as a potential paleo-SST proxy for mid-latitude regions, where high resolution SST proxies are not available, as well as in tropical to subtropical regions.

Keywords

paleo-SST proxy coral Porites Platygyra oxygen isotope ratios Faviid corals 

References

  1. Abe, O., Matsumoto, E. and Isdale, P., 1998, Paleo-SST reconstruction during the last two centuries by Ishigaki coral, Japan. In: Matsumoto, E. (ed), Coral Climatology by Annual Bands, Third International Marine Science Symposium on coral Climatology by Annual Bands. Japan Marine Science Foundation, Tokyo, Sanjo-Kaikan, University of Tokyo, p. 8–14.Google Scholar
  2. Allison, N., Tudhope, A. W. and Fallick, A. E., 1996, Factors influencing the stable carbon and oxygen isotope composition of Porties lutea coral skeletons from Phuket, south Thailand. Coral Reefs, 14, 43–57.Google Scholar
  3. Charles, C. D., Hunter, D. E. and Fairbanks, R. G., 1997, Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science, 277, 295–298.CrossRefGoogle Scholar
  4. Correge, T., 2006, Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 408–428.CrossRefGoogle Scholar
  5. Dunbar, R. B., Wellington, G. M., Colgan, M. W. and Glynn, P. W., 1994, Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos corals. Paleoceanography, 9, 291–315.CrossRefGoogle Scholar
  6. Fujioka, Y., 1999, Mass destruction of the hermatypic corals during a bleaching event in Ishigaki Island, southwestern Japan. Galaxea Journal of Japan Coral Reef Society, 1, 41–50.Google Scholar
  7. Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M., Dunbar, R. B. and Schrag, D. P., 2000, New views of tropical paleoclimates from corals. Quaternary Science Reviews, 19, 45–64.CrossRefGoogle Scholar
  8. Gagan, M. K., Chivas, A. R. and Isdale, P. J., 1994, High-resolution isotopic records from corals using ocean temperature and mass-spawning chronomaters. Earth and Planetary Science Letters, 121, 549–558.CrossRefGoogle Scholar
  9. Je, J. G., Choi, K. S. and Lee, Y. D., 2002, Marine organisms in Korea seas. Seoguipo city, Seoquipo, Jeju, Korea, 391p.Google Scholar
  10. Kayanne, H., Harii, S., Ide, Y. and Akimoto, F., 2002, Recovery of coral populations after the 1998 bleaching on Shiraho Reef, in the southern Ryukyus, NW Pacific. Marine Ecology Progress Series, 239, 93–103.CrossRefGoogle Scholar
  11. McConnaughey, T., 1989, 13C and 18O isotopic disequilibrium in biological carbonate: I. Patterns. Geochim. Cosmochim. Acta, 53, 151–162.CrossRefGoogle Scholar
  12. Lough, J. M., 2000, 1997–1998: Unprecedented thermal stress to coral reefs? Geophys. Res. Lett., 27, 3901–3904.CrossRefGoogle Scholar
  13. Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T. and Isdale, P. J., 1996, Mg/Ca thermometry in coral skeletons. Science, 274, 961–963.CrossRefGoogle Scholar
  14. Nishihira, M. and Veron J., 1995, Hermatypic corals of Japan. Kaiyusha, Tokyo 439p.Google Scholar
  15. Paillard, D., Labeyrie, L. and Yiou, P., 1996, Macintosh program performs time-series analysis. Eos Trans., 77, 379.CrossRefGoogle Scholar
  16. Porter, J. W., Muscatine, L., Dubinsky Z. and Falkowski, P.G., 1984, Primary production and photoadaptation in light and shadeadapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. Lond. Ser. B, 222, 161–180.CrossRefGoogle Scholar
  17. Quinn, T. M., Crowley, T. J. and Taylor, F. W., 1996, New stable isotope results from a 173-year coral from Espiritu Santo, Vanuatu. Geophys. Res. Lett., 23, 3413–3416.CrossRefGoogle Scholar
  18. Quinn, T. M., Taylor, F. W. and Crowley, T. J., 1993, A 173 year stable isotope record from a tropical south pacific coral. Quaternary Science Reviews, 12, 407–418.CrossRefGoogle Scholar
  19. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. and Wang, W., 2002, An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609–1625.CrossRefGoogle Scholar
  20. Shimamura, M., Oba, T., Xu, G., Lu, B., Wang, L., Murayama, M., Toyoda, K. and Winter, A., 2005, Fidelity of δ18O as a proxy for sea surface temperature: Influence of variable coral growth rates on the coral Porites lutea from Hainan Island, China. Geochemistry Geophysics Geosystems, 6, Q09017, doi:10.1029/2005GC000966.Google Scholar
  21. Sugihara, K. and Yamano, H., 2004, Tsushima Archipelago. In: Ministry of the Environment and Japan Coral Reef Society (ed), Coral Reefs of Japan, Ministry of the Environment, Tokyo, p. 245–247.Google Scholar
  22. Suzuki, A., Gagan, M. K., Fabricius, K., Isdale, P. J., Yukino, I. and Kawahata, H., 2003, Skeletal isotope microprofiles of growth perturbations in Porites corals during the 1997–1998 mass bleaching event. Coral Reefs, 22, 357–369.CrossRefGoogle Scholar
  23. Suzuki, A., Yukino, I. and Kawahata, H., 1999, Temperature-skeletal δ18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan. Geochemical Journal, 33, 419–428.Google Scholar
  24. Veron, J., 2000, Corals of the World V. 3. Australian Institute of Marine Science, Townsville, p. 473.Google Scholar
  25. Watanabe, T and Oba, T., 1998, High resolution reconstruction of water temperature estimated from oxygen isotopic ratios of a modern Tridacna shell based on freezing microtome sampling technique. Chikyu Kagaku, 32, 87–95.Google Scholar
  26. Watanabe, T., Gagan, M. K., Corrége, T., Scott-Gagan, H., Cowley, J. and Hantoro, W. S., 2003, Oxygen isotope systematics in Diploastrea heliopora: New coral archive of tropical paleoclimate. Geochimica et Cosmochimica Acta, 67, 1349–1358.CrossRefGoogle Scholar
  27. Weber, J. N. and Woodhead, P. M. J., 1972, Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research, 77, 463–473.CrossRefGoogle Scholar
  28. Wellington, G. M., Dunbar, R. B. and Merlen, G., 1996, Calibration of stable oxygen isotope signatures in Galápagos corals. Paleoceanography, 11, 467–480.CrossRefGoogle Scholar
  29. Yamano, H., 2002, The coral reef of Iki Island, coral communities of Nagasaki Prefecture, and global environment. Island Science, 40, 1–8.Google Scholar
  30. Yamano, H., Hori, K., Yamaguchi, M., Yamagawa, O. and Ohmura, A., 2001, Highest-latitude coral reef at Iki Island, Japan. Coral Reefs, 20, 9–12.CrossRefGoogle Scholar
  31. Yamano, H., Sugihara, K., Nakai, T. and Yamagawa, O., 2004, Iki Islands. In: Ministry of the Environment and Japan Coral Reef Society (ed), Coral Reefs of Japan, Ministry of the Environment, Tokyo, p. 242–244.Google Scholar

Copyright information

© The Association of Korean Geoscience Societies 2008

Authors and Affiliations

  • Michiyo Shimamura
    • 1
  • Kiseong Hyeong
    • 1
    Email author
  • Chan Min Yoo
    • 1
  • Tsuyoshi Watanabe
    • 2
  • Tomohisa Irino
    • 3
  • Hoi-Soo Jung
    • 4
  1. 1.Marine Resources Research DepartmentKorea Ocean Research and Development Institute, AnsanSeoulKorea
  2. 2.Graduate School of ScienceHokkaido UniversitySapporoJapan
  3. 3.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  4. 4.Marine Environment Research DepartmentKorea Ocean Research & Development Institute, AnsanSeoulKorea

Personalised recommendations