Advertisement

Predicting the fragility of renal calculi in response to shock wave lithotripsy through their radiographic appearance

  • Mohamed Ali ElkoushyEmail author
  • M. Nady
  • A. Abdel Hafez
  • E. Salah
Original Article
  • 24 Downloads

Abstract

Objectives

To evaluate the radiological characteristics of renal stones on plain X-ray film of the kidneys, ureters and bladder (KUB) area as predictors of stone fragility during shock wave lithotripsy (SWL).

Patients and Methods

This prospective study included 336 patients who had a single renal pelvic stone ≤20 mm and were managed by SWL at 3 different centers. The patients were classified according to the radiological appearance of the stone on KUB film in terms of homogeneity, smoothness of the outline, and radiodensity in comparison to the last rib. The primary endpoint was the stone-free rate (SFR) within 3 months post-SWL. Multivariate regression analysis was used to compare the results.

Results

The overall SFR was 71.43%. SFR was significantly higher in heterogeneous compared with homogenous stones (86% vs. 53%; p<0.01) and in rough compared with smooth surface calculi (77% vs. 61%, p<0.01). SFRs for stones with density less than, similar to or higher than that of the last rib were 82%, 69% and 56%, respectively (p<0.01). Multivariate analysis showed a positive proportional relationship between stone fragility (SWL outcome) and one or more favorable radiological criteria.

Conclusion

The radiological characteristics of renal calculi could predict their fragility after SWL. Stones which were heterogeneous, rough, or less dense than the last rib on KUB film were more likely to disintegrate during SWL.

Key Words

Shock wave lithotripsy renal calculi radiography urolithiasis 

References

  1. 1.
    Fuchs GJ. Interventional urinary stone management. J.Urol. 1994; Mar;151(3):668–669.PubMedGoogle Scholar
  2. 2.
    Grasso M, Loisides P, Beaghler M, Bagley D. The case for primary endoscopic management of upper urinary tract calculi: I. A critical review of 121 extracorporeal shock-wave lithotripsy failures. Urology. 1995; Mar;45(3):363–371.PubMedCrossRefGoogle Scholar
  3. 3.
    Dretler SP, Polykoff G. Calcium oxalate stone morphology: Fine tuning our therapeutic distinctions. J.Urol. 1996; Mar;155(3):828–833.PubMedCrossRefGoogle Scholar
  4. 4.
    Abe T, Akakura K, Kawaguchi M, Ueda T, Ichikawa T, Ito H, et al. Outcomes of shockwave lithotripsy for upper urinary-tract stones: A large-scale study at a single institution. J.Endourol. 2005; Sep;19(7):768–773.PubMedCrossRefGoogle Scholar
  5. 5.
    Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, D’A Honey RJ, et al. Stone attenuation and skin-tostone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology. 2008;72(4):765–769.PubMedCrossRefGoogle Scholar
  6. 6.
    White W, Klein F. Five-year clinical experience with the Dornier Delta lithotriptor. Urology. 2006; Jul;68(1):28–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Coz F, Orvieto M, Bustos M, Lyng R, Stein C, Hinrichs A, et al. Extracorporeal shockwave lithotripsy of 2000 urinary calculi with the modulith SL-20: Success and failure according to size and location of stones. J.Endourol. 2000; Apr;14(3):239–246.PubMedCrossRefGoogle Scholar
  8. 8.
    Albala DM, Assimos DG, Clayman RV, Denstedt JD, Grasso M, Gutierrez Aceves J, et al. Lower pole I: A prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J.Urol. 2001; Dec;166(6):2072–2080.PubMedCrossRefGoogle Scholar
  9. 9.
    Pace KT, Ghiculete D, Harju M, Honey RJ. Shock wave lithotripsy at 60 or 120 shocks per minute: A randomized, double-blind trial. J.Urol. 2005; Aug;174(2):595–599.PubMedCrossRefGoogle Scholar
  10. 10.
    Ackermann DK, Fuhrimann R, Pfluger D, Studer UE, Zingg EJ. Prognosis after extracorporeal shock wave lithotripsy of radiopaque renal calculi: A multivariate analysis. Eur.Urol. 1994;25(2):105–109.PubMedGoogle Scholar
  11. 11.
    Arshadi H, Dianat SS, Ganjehei L. Accuracy of radiological features for predicting extracorporeal shock wave lithotripsy success for treatment of kidney calculi. Urol.J. 2009;6(2):88–91.PubMedGoogle Scholar
  12. 12.
    Cohen NP, Parkhouse H, Scott ML, Bowsher WG, Crocker P, Whitfield HN. Prediction of response to lithotripsy—the use of scanning electron microscopy and X-ray energy dispersive spectroscopy. Br.J.Urol. 1992; Nov;70(5):469–473.PubMedGoogle Scholar
  13. 13.
    Dretler SP. Stone fragility—a new therapeutic distinction. J.Urol. 1988; May;139(5):1124–1127.PubMedGoogle Scholar
  14. 14.
    Bhatta KM, Prien EL,Jr, Dretler SP. Cystine calculi—rough and smooth: A new clinical distinction. J.Urol. 1989; Oct;142(4):937–940.PubMedGoogle Scholar
  15. 15.
    Williams JC,Jr, Saw KC, Paterson RF, Hatt EK, McAteer JA, Lingeman JE. Variability of renal stone fragility in shock wave lithotripsy. Urology. 2003; Jun;61(6):1092,6; discussion 1097.PubMedCrossRefGoogle Scholar
  16. 16.
    Chaussy C, Fuchs G, Kahn R, Hunter P, Goodfriend R. Transurethral ultrasonic ureterolithotripsy using a solidwire probe. Urology. 1987; May;29(5):531–532.PubMedCrossRefGoogle Scholar
  17. 17.
    Joseph P, Mandal AK, Singh SK, Mandal P, Sankhwar SN, Sharma SK. Computerized tomography attenuation value of renal calculus: Can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J.Urol. 2002; May;167(5):1968–1971.PubMedCrossRefGoogle Scholar
  18. 18.
    Saw KC, McAteer JA, Fineberg NS, Monga AG, Chua GT, Lingeman JE, et al. Calcium stone fragility is predicted by helical CT attenuation values. J.Endourol. 2000; Aug;14(6):471–474.PubMedCrossRefGoogle Scholar
  19. 19.
    Mattelaer P, Schroder T, Fischer N, Jakse G. In situ extracorporeal shockwave lithotripsy of distal ureteral stones: Parameters for therapeutic success. Urol.Int. 1994;53(2):87–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Saw KC, McAteer JA, Monga AG, Chua GT, Lingeman JE, Williams JC,Jr. Helical CT of urinary calculi: Effect of stone composition, stone size and scan collimation. AJR Am.J.Roentgenol. 2000; Aug;175(2):329–332.PubMedGoogle Scholar
  21. 21.
    Bon D, Dore B, Irani J, Marroncle M, Aubert J. Radiographic prognostic criteria for extracorporeal shock-wave lithotripsy: A study of 485 patients. Urology. 1996; Oct;48(4):556,60; discussion 560–1.PubMedCrossRefGoogle Scholar
  22. 22.
    Aeberli D, Muller S, Schmutz R, Schmid HP. Predictive value of radiological criteria for disintegration rates of extracorporeal shock wave lithotripsy. Urol.Int. 2001;66(3):127–130.PubMedCrossRefGoogle Scholar
  23. 23.
    Krishnamurthy MS, Ferucci PG, Sankey N, Chandhoke PS. Is stone radiodensity a useful parameter for predicting outcome of extracorporeal shockwave lithotripsy for stones < or = 2 cm? Int.Braz J.Urol. 2005; Jan–Feb;31(1):3,8; discussion 9. 1110–5704PubMedCrossRefGoogle Scholar

Copyright information

© PAUSA and Springer Verlag France 2011

Authors and Affiliations

  • Mohamed Ali Elkoushy
    • 1
    Email author
  • M. Nady
    • 2
  • A. Abdel Hafez
    • 3
  • E. Salah
    • 2
  1. 1.Department of UrologySuez Canal UniversityIsmailiaEgypt
  2. 2.Department of UrologyAl-Azhar UniversityAssiutEgypt
  3. 3.Department of UrologySohag UniversitySohagEgypt

Personalised recommendations