Ectopic expression of IiSHP2 from Isatis indigotica Fortune, a PLE-lineage MADS-box gene, influences leaf, floral organ and silique morphology in Arabidopsis thaliana

  • Meng-Xin Lu
  • Dian-Zhen Li
  • Zuo-Qian Pu
  • Yan-Qin Ma
  • Xuan Huang
  • Zi-Qin XuEmail author
Research Article


In order to ascertain the regulatory mechanism of fruit development in Isatis indigotica Fortune, the complementary DNA (cDNA) sequence of the SHATTERPROOF 2 (SHP2) orthologous gene was identified by Rapid Amplification of cDNA Ends technology and the corresponding gene was named IiSHP2. The expression pattern of IiSHP2 was determined by quantitative reverse transcription-polymerase chain reaction and wild-type Col-0 Arabidopsis plants were transformed with the IiSHP2 gene using Agrobacterium tumefaciens and the floral-dip method. Expression analyses indicated that IiSHP2 was highly expressed in flowers, silicles and seeds. Compared to wild-type plants, IiSHP2 transgenic lines bolted earlier. Detailed phenotypic observations showed that the size of the rosette and cauline leaves in transgenic lines was reduced and the cauline leaves of the transgenic lines were incurved and displayed a funnel-like shape. During the reproductive growth stage, IiSHP2 transgenic plants produced shortened sepals and the flower buds were not encapsulated completely. Moreover, the petals of the transgenic lines were converted into stamineous tissues, accompanied by exposed stamens, short malformed siliques and wrinkled valves, indicating a severe decline in fertility. These experimental conclusions are valuable as a reference for the breeding of medicinal plants.


Isatis indigotica Fortune IiSHP2 MADS-box gene Floral differentiation Silique development 



This work was supported by the National Natural Science Foundation of China (30870194, J1210063), the Research Project of Provincial Key Laboratory of Shaanxi (15JS111), and the Opening Foundation of Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12298_2019_745_MOESM1_ESM.docx (16 kb)
Supplemental Fig. 1 The cDNA sequence of IiSHP2 and the amino acid sequence of the encoded product. (DOCX 16 kb)


  1. APG (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  2. Battaglia R, Brambilla V, Colombo L, Stuitje AR, Kater MM (2006) Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev 123:267–276CrossRefGoogle Scholar
  3. Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:2544–2556CrossRefGoogle Scholar
  4. Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC (2012) C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol 53:1053–1067CrossRefGoogle Scholar
  5. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefGoogle Scholar
  6. Colombo M, Brambilla V, Marcheselli R, Caporali E, Kater MM, Colombo L (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev Biol 337:294–302CrossRefGoogle Scholar
  7. Ehlers K, Bhide AS, Tekleyohans DG, Wittkop B, Snowdon RJ, Becker A (2016) The MADS box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana. PLoS ONE 11:e0165075CrossRefGoogle Scholar
  8. Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611CrossRefGoogle Scholar
  9. Ferrándiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438CrossRefGoogle Scholar
  10. Flanagan CA, Hu Y, Ma H (1996) Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J 10:343–353CrossRefGoogle Scholar
  11. Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550.e1–550.e2Google Scholar
  12. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51CrossRefGoogle Scholar
  13. Hong JK, Kim SY, Kim KS, Kwon SJ, Kim JS, Kim JA, Lee SI, Lee YH (2013) Overexpression of a Brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in Brassica napus. Plant Biotechnol Rep 7:231–237CrossRefGoogle Scholar
  14. Jack T, Sieburth L, Meyerowitz E (1997) Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. Plant J 11:825–839CrossRefGoogle Scholar
  15. Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444CrossRefGoogle Scholar
  16. Kord H, Shakib AM, Daneshvar MH, Azadi P, Bayat V, Mashayekhi M, Zarea M, Seifi A, Ahmad-Raji M (2015) RNAi-mediated down-regulation of SHATTERPROOF gene in transgenic oilseed rape. 3 Biotech 5:271–277CrossRefGoogle Scholar
  17. Kotoda N, Wada M, Kusaba S, Kano-Murakami Y, Masuda T, Soejima J (2002) Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci 162:679–687CrossRefGoogle Scholar
  18. Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023CrossRefGoogle Scholar
  19. Krizek BA, Lewis MW, Fletcher JC (2006) RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J 45:369–383CrossRefGoogle Scholar
  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  21. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770CrossRefGoogle Scholar
  22. Lü S, Du X, Lu W, Chong K, Meng Z (2007) Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. Evol Dev 9:92–104CrossRefGoogle Scholar
  23. Ma YQ, Li DZ, Zhang L, Li Q, Yao JW, Ma Z, Huang X, Xu ZQ (2017) Ectopic expression of IiFUL isolated from Isatis indigotica could change the reproductive growth of Arabidopsis thaliana. Plant Physiol Biochem 121:140–152CrossRefGoogle Scholar
  24. Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131CrossRefGoogle Scholar
  25. Mizzotti C, Mendes MA, Caporali E, Schnittger A, Kater MM, Battaglia R, Colombo L (2012) The MADS box genes SEEDSTICK and ARABIDOPSIS B sister play a maternal role in fertilization and seed development. Plant J 70:409–420CrossRefGoogle Scholar
  26. Mühlhausen A, Lenser T, Mummenhoff K, Theißen G (2013) Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Plant J 73:824–835CrossRefGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88CrossRefGoogle Scholar
  29. Rijpkema AS, Vandenbussche M, Koes R, Heijmans K, Gerats T (2010) Variations on a theme: changes in the floral ABCs in angiosperms. Semin Cell Dev Biol 21:100–107CrossRefGoogle Scholar
  30. Rodríguez-Cazorla E, Ortuño-Miquel S, Candela H, Bailey-Steinitz LJ, Yanofsky MF, Martínez-Laborda A, Ripoll JJ, Vera A (2018) Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genet 14:e1007182CrossRefGoogle Scholar
  31. Smyth D (2000) A reverse trend--MADS functions revealed. Trends Plant Sci 5:315–317CrossRefGoogle Scholar
  32. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85CrossRefGoogle Scholar
  33. Thiruvengadam M, Chung IM, Yang CH (2012) Overexpression of Oncidium MADS box (OMADS1) gene promotes early flowering in transgenic orchid (Oncidium Gower Ramsey). Acta Physiol Plant 34:1295–1302CrossRefGoogle Scholar
  34. Wei B, Liu D, Guo J, Leseberg CH, Zhang X, Mao L (2013) Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. J Plant Physiol 170:424–431CrossRefGoogle Scholar
  35. Wu W, Chen F, Jing D, Liu Z, Ma L (2012) Isolation and characterization of an AGAMOUS-like gene from Magnolia wufengensis (Magnoliaceae). Plant Mol Biol Rep 30:690–698CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2020

Authors and Affiliations

  1. 1.Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi’anChina

Personalised recommendations