Advertisement

Physiology and Molecular Biology of Plants

, Volume 25, Issue 6, pp 1407–1418 | Cite as

Changes in grapes composition during ripening of five Vitis vinifera L varieties as related to Tephritidae and Drosophilidae infestations

  • Hicham JediyiEmail author
  • Khalid Naamani
  • Abderrahim Ait Elkoch
  • Naima Lemjiber
Research Article

Abstract

Vitis vinifera (L) is a great economically important crop. However, huge loss in fruits due to destructive pests hinders the improvement of its performance. The study of their biochemical profile, ripening dynamics, and defense mechanisms presents a great scientific interest. In this work, phenylalanine ammonia lyase (PAL), tyrosine ammonia lyase (TAL) activities, proteins, sugar and malondialdehyde (MAD) were investigated during ripening of five grape varieties in Loudaya region (Marrakech, Morocco), three of them are allochthonous while two are autochthonous. The Dipterans infestations by Drosophila suzukii and Ceratitis capitata have been highlighted as a factor that stimulates the defense mechanism in ripeness stage of grapes. Sugars, proteins and MDA have shown a gradual increase in grapes maturation in all varieties. TAL activity decrease in the course of the maturation in contrast to the PAL activity increasing in the ripe grapes. High content of PAL, TAL, and MDA compounds were noted in the ripe infested grapes as compared to the healthy ones. A significant difference (P < 0.05) for all biochemical assays according to varieties, maturity and the condition (damaged/undamaged) were found. A PCA analysis highlighted different biochemical behaviours from the grapes concerning the flies’ infestations (79.64% of total variation). The variables that have contributed to the discrimination of the grapes according to their stage of maturities were sugar, proteins and TAL. The higher concentrations of PAL (6.64 ± 0.57 EU), TAL (0.93 ± 0.05 EU) and MDA (58.32 ± 2.55 EU) especially in the injured grapes prove that flies infestation triggered a priming defense mechanism, directly activating defense reactions. The results obtained could be crucial in establishing a database of the Moroccan grapes biochemical defense which provides a foundation for new methodologies in the plants behavior against fruit flies stress.

Keywords

Diptera Grapes Ripeness Infestations Biochemical compounds 

Notes

Acknowledgements

We are grateful to the company Bio-Jap (society agricultural exploitation) and Mr. Khalifa (agricultural engineer) for their support of our work on autochthonous varieties, and Mr. M. Ait Belhoucine proprietor of the locale varieties.

Authors contribution

HJ performed the field sampling, the experiment and wrote the manuscript, NL assisted in the field and during the experiments, KN and AAE supervise the research designed the experiments, and the shaping of the manuscript.

References

  1. Abidi W, Jiménez S, Moreno MA, Gogorcena Y (2011) Evaluation of antioxidant compounds and total sugar content in a nectarine (Prunus persica (L.) Batsch) progeny. Int J Mol Sci 12:6919–6935PubMedPubMedCentralGoogle Scholar
  2. Arroyo A, Bossi F, Finkelstein RR, Leon P (2003) Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acidinsensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 42:133–231Google Scholar
  3. Beaudoin-Eagan LD, Thorpe TA (1985) Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol 78(3):438–441PubMedPubMedCentralGoogle Scholar
  4. Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35(1):28–38PubMedGoogle Scholar
  5. Bi JL, Murphy JB, Felton GW (1997) Does salicylic acid act as a signal in cotton for induced resistance to Helicoverpa zea? J Chem Ecol 23(7):1805–1818Google Scholar
  6. Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signaling and antioxidant network connections in plant cells. FEBS J 277(9):2022–2037PubMedGoogle Scholar
  7. Brooks SJ, Moore JN, Murphy JB (1993) Quantitative and qualitative changes in sugar content of peach genotypes (Prunus persica (L.) Batsch). J Am Soc Hortic Sci 118:97–100Google Scholar
  8. Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJ, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60(9):2575–2587PubMedPubMedCentralGoogle Scholar
  9. Clemente E, Correia JM (2006) Peroxidase and polyphenoloxidase activities in guvaia fruit at different maturation stages. J Food Agric Environ 4(2):112–115Google Scholar
  10. Dhouibi MH, Fellah H (1997) Use of host-marking pheromone in the control of the fruit fly Ceratitis capitata Wied. (Diptera, Tephritidae). Bull OILB/SROP 20:156–167Google Scholar
  11. Dihazi A, Jaiti F, Zouine J, El Hassni M, El Hadrami I (2003) Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum f. sp. albedinis. Phytopathol Mediterr 42(1):9–16Google Scholar
  12. Dogan H, Ercisli S, Temim E, Hadziabulic A, Tosun M, Yilmaz SO, Zia-Ul-Haq M (2014) Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. Comptes Rendus De L Academie Bulgare Des Sci 67:1593–1600Google Scholar
  13. Dogbo DO, Bekro JAM, Bekro YA, Sie RS, Gogbeu SJ, Traore A (2008) Influence de l’acide salicylique sur la synthèse de la phénylalanine ammonia-lyase, des polyphénoloxydases et l’accumulation des composes phénoliques chez le manioc (Manihot esculenta Crantz). Sci Nat 5(1):1–13Google Scholar
  14. DuBois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356Google Scholar
  15. El Arem A, Flamini G, Saafi EB, Issaoui M, Zayene N, Ferchichi A, Hammami M, Hela AN, Achour L (2011) Chemical and aroma volatile compositions of date palm (Phoenix dectylifera L.) fruits at three maturation stages. Food Chem 127:1744–1754Google Scholar
  16. El Hassni M (2005) Interaction Palmier dattier-Fusarium oxysporum abledinis: élicitation des réactions de défense et développement de nouvelles stratégies pour le biocontrôle de la maladie du bayoud. Thèse de Doctorat, Université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Maroc, p 187Google Scholar
  17. El Keroumi A, Naamani K, Dahbi A, Luque I, Carvajal A, Cerda X, Boulay R (2010) Effect of ant predation and abiotic factors on the mortality of medfly larvae, Ceratitis capitata, in the Argan forest of Western Morocco. Biocontrol Sci Technol 20(7):751–762Google Scholar
  18. English-Loeb G, Karban R, Walker MA (1998) Genotypic variation in constitutive and induced resistance in grapes against spider mite (Acari: tetranychidae) herbivores. Environ Entomol 27(2):297–304Google Scholar
  19. Fils-Lycaon BR, Wiersma PA, Eastwell KC, Sautiere P (1996) A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol 111(1):269–273PubMedPubMedCentralGoogle Scholar
  20. Galiana-Belaguer L, Ibanez G, Cebolla-Cornejo J, Rosello S (2018) Evaluation of germplasm in Solanum Lycopersicon for tomato taste improvement. Turk J Agric For 42:309–321Google Scholar
  21. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930Google Scholar
  22. Guest D, Brown J (1997) Plant defences against pathogens. Plant Pathog Plant Dis 263–286Google Scholar
  23. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  24. Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180PubMedGoogle Scholar
  25. Hildebrand DF, Rodriguez JG, Brown GC, Luu KT, Volden CS (1986) Peroxidative responses of leaves in two soybean genotypes injured by twospotted spider mites (Acari: Tetranychidae). J Econ Entomol 79(6):1459–1465Google Scholar
  26. Hofmann J, El Ashry AEN, Anwar S, Erban A, Kopka J, Grundler F (2010) Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant J 62(6):1058–1071PubMedPubMedCentralGoogle Scholar
  27. iForcada CF, Gogorcena Y, Moreno MA (2013) Fruit sugar profile and antioxidants of peach and nectarine cultivars on almond × peach hybrid rootstocks. Sci Hortic 164:563–572Google Scholar
  28. Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5(1):5–6Google Scholar
  29. Liquido NJ, Cunningham RT, Nakagawa S (1990) Host plants of Mediterranean fruit fly (Diptera: Tephritidae) on the Island of Hawaii (1949-1985 survey). J Econ Entomol 83(5):1863–1878Google Scholar
  30. Lorenz DH, Eichhorn KW, Bleiholder H, Klose R, Meire U, Weber E (1994) Phanologische Entwicklungs stadien drt weinrebe (Vitis vinifera L. ssp. Vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Wein-Wissenschaft 49(2):66–70Google Scholar
  31. Macedo MLR, Freire MDGM, da Silva MBR, Coelho LCBB (2007) Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol Part A Mol Integr Physiol 146(4):486–498Google Scholar
  32. MADRPM (2010) Ministère de l’Agriculture, du Développement Rural et des Pêches MarocaineGoogle Scholar
  33. Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577PubMedGoogle Scholar
  34. Mitsui H, Takahashi KH, Kimura MT (2006) Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Popul Ecol 48(3):233–237Google Scholar
  35. Mohri S, Endo Y, Matsuda K, Kitamura K, Fujimoto K (1990) Physiological effects of soybean seed lipoxygenases on insects. Agric Biol Chem 54(9):2265–2270Google Scholar
  36. Pirie A, Mullins MG (1977) Interrelationships of sugars, anthocyanins, total phenols and dry weight in the skin of grape berries during ripening. Am J Enol Vitic 28:204–209Google Scholar
  37. Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438PubMedPubMedCentralGoogle Scholar
  38. Price J, Laxmi A, Martin SKS, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150PubMedPubMedCentralGoogle Scholar
  39. Rani PU, Jyothsna Y (2010) Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol Plant 32(4):695–701Google Scholar
  40. Reignault PH, Cogan A, Muchembled J, Lounes-Hadj Sahraoui A, Durand R, Sancholle M (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytol 149(3):519–529Google Scholar
  41. Roditakis E, Tsagkarakou A, Roditakis NE (2008) Extensive damage on white variety table grapes by the Mediterranean fruit fly Ceratitis capitata (Wiedemann) in Crete. EPPO Bull 38(2):216–219Google Scholar
  42. Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613PubMedGoogle Scholar
  43. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709PubMedGoogle Scholar
  44. Rössler Y, Malacrida A, Zapater MC (1994) Mutants, chromosomes, and genetic maps in the Mediterranean fruit fly. In: Calkins CO, Klassen W, Liedo P (eds) Fruit flies and the sterile insect technique. CRC Press, Boca Raton, Florida, pp 97–112Google Scholar
  45. Rouzes R, Delbac L, Ravidat ML, Thiéry D (2012) First occurrence of Drosophila suzukii in the Sauternes vineyards. J Int Sci Vigne Vin 46(2):145–147Google Scholar
  46. Rusjan D, Korosec-Koruzaz Z, Veberic R (2008) Primary and secondary metabolites related to the quality petential of table grape varieties (Vitis vinifera L.). Eur J Hortic Sci 73(3):124–130Google Scholar
  47. Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223(6):1329PubMedGoogle Scholar
  48. Sassa H, Hirano H (1998) Style-specific and developmentally regulated accumulation of a glycosylated thaumatin/PR5-like protein in Japanese pear (Pyrus serotina Rehd.). Planta 205:514–521PubMedGoogle Scholar
  49. Sengul M, Ercisli S, Yildiz H, Gungor N, Kavaz A, Cetin B (2011) Antioxidant, antimicrobial activity and total phenolic content with the aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran J Pharm Res 10(1):49–55PubMedPubMedCentralGoogle Scholar
  50. Serce S, Ercisli S, Sengul M, Gunduz K, Orhan E (2010) Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacogn Mag 6(21):9–12PubMedPubMedCentralGoogle Scholar
  51. Serrano M, Guillén F, Martínez-Romero D, Castillo S, Valero D (2005) Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J Agric Food Chem 53:2741–2745PubMedGoogle Scholar
  52. Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 104(2):169–174Google Scholar
  53. Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112(4):487–494PubMedGoogle Scholar
  54. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221Google Scholar
  55. Stockel J (2000) Les ravageurs de la vigne. Editions Féret, Bordeaux, pp 121–129Google Scholar
  56. Summers CB, Felton GW (1994) Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem Mol Biol 24(9):943–953Google Scholar
  57. Taira T, Toma N, Ichi M, Takeuchi M, Ishihara M (2005) Tissue distribution, synthesis stage, and ethylene induction of pineapple (Ananas comosus) chitinases. Biosci Biotechnol Biochem 69:852–854PubMedGoogle Scholar
  58. Thaler JS, Fidantsef AL, Duffey SS, Bostock RM (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25(7):1597–1609Google Scholar
  59. Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540PubMedPubMedCentralGoogle Scholar
  60. Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Mérillon JM (2000) Sugar sensing and Ca2+ calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53:659–665PubMedGoogle Scholar
  61. War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S (2011) Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal Behav 6(12):1973–1978PubMedPubMedCentralGoogle Scholar
  62. Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71(14–15):1610–1614PubMedGoogle Scholar
  63. Wong TT, Ramadan MM (1992) Mass rearing biology of larval parasitoids (Hymenoptera: Braconidae: Opiinae) of tephritid flies (Diptera: Tephritidae) in Hawaii. In: Advances in insect rearing for research and pest management. Westview Press, San Francisco, USA, pp 405–426Google Scholar
  64. Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146(3):852–858PubMedPubMedCentralGoogle Scholar
  65. Zouiten N (2002) Interaction Olivier-Psylle: Caractérisation et rôle des composés phenoliques dans l’attraction des cultivars d’olivier (Olea europea L.) vis-à-vis de l’insecte (Euphyllra olivina Costa). Thèse, Univ Cadi Ayyad, MarocGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2019

Authors and Affiliations

  • Hicham Jediyi
    • 1
    Email author
  • Khalid Naamani
    • 1
  • Abderrahim Ait Elkoch
    • 1
  • Naima Lemjiber
    • 1
  1. 1.Laboratory of Protection and Valorization of Vegetable Resources, Faculty of Sciences Semlalia MarrakechCadi Ayyad UniversityMarrakeshMorocco

Personalised recommendations