Advertisement

Screening internal controls for expression analyses involving numerous treatments by combining statistical methods with reference gene selection tools

  • Joyous T. Joseph
  • Najya Jabeen Poolakkalody
  • Jasmine M. Shah
Research Article

Abstract

Real-time PCR is always the method of choice for expression analyses involving comparison of a large number of treatments. It is also the favored method for final confirmation of transcript levels followed by high throughput methods such as RNA sequencing and microarray. Our analysis comprised 16 different permutation and combinations of treatments involving four different Agrobacterium strains and three time intervals in the model plant Arabidopsis thaliana. The routinely used reference genes for biotic stress analyses in plants showed variations in expression across some of our treatments. In this report, we describe how we narrowed down to the best reference gene out of 17 candidate genes. Though we initiated our reference gene selection process using common tools such as geNorm, Normfinder and BestKeeper, we faced situations where these software-selected candidate genes did not completely satisfy all the criteria of a stable reference gene. With our novel approach of combining simple statistical methods such as t test, ANOVA and post hoc analyses, along with the routine software-based analyses, we could perform precise evaluation and we identified two genes, UBQ10 and PPR as the best reference genes for normalizing mRNA levels in the context of 16 different conditions of Agrobacterium infection. Our study emphasizes the usefulness of applying statistical analyses along with the reference gene selection software for reference gene identification in experiments involving the comparison of a large number of treatments.

Keywords

Reference genes Arabidopsis Agrobacterium Stable expression Normalization Real-time PCR 

Notes

Acknowledgements

We thank DST (Department of Science and Technology)-INSPIRE (Fellowship No.IF140978 and Grant No. IFA11-LSPA-04), India, for the doctoral fellowship of Joseph JT and project funding of Shah JM, respectively. We gratefully acknowledge K. Veluthambi (Madurai Kamaraj University, India) and Paul J. Hooykaas (Leiden University, the Netherlands) for providing Agrobacterium strains. We thank Maya N for preliminary support.

Supplementary material

12298_2018_608_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4589 kb)

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250.  https://doi.org/10.1158/0008-5472.CAN-04-0496 CrossRefPubMedGoogle Scholar
  2. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publications of quantitative real-time PCR experiments. Clin Chem 55:611–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefPubMedGoogle Scholar
  3. Czechowski T, Stitt M, Altmann T, Udvardi MK (2005) Genome-wide identification and testing of superior reference genes for transcript normalization. Plant Physiol 139:5–17.  https://doi.org/10.1104/pp.105.063743.1 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445.  https://doi.org/10.1093/mp/ssn019 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ditt RF, Kerr KF, De Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19:665–681.  https://doi.org/10.1094/MPMI-19-0665 CrossRefPubMedGoogle Scholar
  6. Expósito-rodríguez M, Borges AA, Borges-pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:1–12CrossRefGoogle Scholar
  7. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions specific, validation of references. J Exp Bot 60:487–493.  https://doi.org/10.1186/1471-2229-8-131 CrossRefPubMedGoogle Scholar
  8. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre J, Louvet R, Rusterucci C et al (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618.  https://doi.org/10.1111/j.1467-7652.2008.00346.x CrossRefPubMedGoogle Scholar
  9. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11:1026–1030.  https://doi.org/10.1038/nbt0993-1026 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Huggett J, Dheda K, Bustin S, Zumla A (2004) Real-time RT-PCR normalization; strategies and considerations. Genes Immun 6:279–284.  https://doi.org/10.1038/sj.gene.6364190 CrossRefGoogle Scholar
  11. Iwakawa H, Carter BC, Bishop BC, Ogas J, Gelvin SB (2017) Perturbation of H3K27me3-associated epigenetic processes increases Agrobacterium-mediated transformation. Mol Plant Microbe Interact 30:35–44.  https://doi.org/10.1094/MPMI-12-16-0250-R CrossRefPubMedGoogle Scholar
  12. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651.  https://doi.org/10.1016/j.bbrc.2006.04.140 CrossRefPubMedGoogle Scholar
  13. Joseph JT, Poolakkalody NJ, Shah JM (2018) Plant reference genes for development and stress response studies. J Biosci 43:173–187.  https://doi.org/10.1007/s12038-017-9728-z CrossRefPubMedGoogle Scholar
  14. Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791.  https://doi.org/10.1111/j.1365-313X.2007.03183.x CrossRefPubMedGoogle Scholar
  15. Lacroix B, Citovsky V (2014) A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated transient genetic transformation. F1000 Res 2:1–8.  https://doi.org/10.12688/f1000research.2-33.v1 CrossRefGoogle Scholar
  16. Lilly ST, Drummond RSM, Pearson MN, MacDiarmid RM (2011) Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol Plant Microbe Interact 24:294–304.  https://doi.org/10.1094/MPMI-10-10-0236 CrossRefPubMedGoogle Scholar
  17. Liu D, Shi L, Han C, Yu J, Li D, Zhang Y (2012) Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS ONE 7:e46451.  https://doi.org/10.1371/journal.pone.0046451 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  19. Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 10:1–11.  https://doi.org/10.1186/1471-2229-10-4 CrossRefGoogle Scholar
  20. Park SY, Vaghchhipawala Z, Vasudevan B, Lee LY, Shen Y, Singer K, Waterworth WM et al (2015) Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Plant J 81:934–946.  https://doi.org/10.1111/tpj.12779 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, Luschnig C, Scheid OM (2009) Transgenerational stress memory is not a general response in Arabidopsis. PLoS ONE 4:e5202.  https://doi.org/10.1371/journal.pone.0005202 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:2002–2007.  https://doi.org/10.1093/nar/29.9.e45 CrossRefGoogle Scholar
  23. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515.  https://doi.org/10.1023/B:BILE.0000019559.84305.47 CrossRefPubMedGoogle Scholar
  24. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862.  https://doi.org/10.1016/j.bbrc.2003.11.177 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349.  https://doi.org/10.1007/s00425-008-0706-4 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719.  https://doi.org/10.1105/tpc.12.5.707 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rodrigues F, Marcelino-Guimaraes FC, Lima A, Vilela R, Margis R (2010) The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal Biochem 406:185–192.  https://doi.org/10.1016/j.ab.2010.07.020 CrossRefGoogle Scholar
  28. Shah JM, Ramakrishnan AM, Singh AK, Ramachandran S, Unniyampurath U, Jayshankar A et al (2015) Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains. BMC Plant Biol 15:210–223.  https://doi.org/10.1186/s12870-015-0595-1 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M (2015) How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 3:9–16.  https://doi.org/10.1016/j.bdq.2015.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Talapatra S, Wagner JDO, Thompson CB (2002) Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ 9:856–861.  https://doi.org/10.1038/sj.cdd.4401078 CrossRefPubMedGoogle Scholar
  31. Tayeh C, Randoux B, Vincent D, Bourdon N, Reignault P (2014) Exogenous trehalose induces defenses in wheat before and during abiotic stress caused by powdery mildew. Phytopathology 104:293–305.  https://doi.org/10.1094/PHYTO-07-13-0191-R CrossRefPubMedGoogle Scholar
  32. Vaghchhipawala ZE, Vasudevan B, Lee S, Morsy MR, Mysore KS (2012) Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration. Plant Cell 24:4110–4123.  https://doi.org/10.1105/tpc.112.100495 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:0034.1–0034.11.  https://doi.org/10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  34. Veena Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35:219–236.  https://doi.org/10.1046/j.1365-313X.2003.01796.x CrossRefPubMedGoogle Scholar
  35. Walker NJ (2002) A technique whose time has come. Science 296:557–559.  https://doi.org/10.1126/science.296.5567.557 CrossRefPubMedGoogle Scholar
  36. Wang M, Wang Q, Zhang B (2013) Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). Gene 530:44–50.  https://doi.org/10.1016/j.gene.2013.07.084 CrossRefPubMedGoogle Scholar
  37. Woo-Lee C, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Muller J et al (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962.  https://doi.org/10.1105/tpc.108.064576 CrossRefGoogle Scholar
  38. Wu H, Liu K, Wang Y, Wu J, Chiu W, Chen C (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:1–16.  https://doi.org/10.1186/1746-4811-10-19 CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Joyous T. Joseph
    • 1
  • Najya Jabeen Poolakkalody
    • 1
  • Jasmine M. Shah
    • 1
  1. 1.Department of Plant ScienceCentral University of KeralaPeriye, KasaragodIndia

Personalised recommendations