Physiology and Molecular Biology of Plants

, Volume 25, Issue 2, pp 347–359 | Cite as

Evaluation of the diversity and phylogenetic implications of NAC transcription factor members of four reference species from the different embryophytic plant groups

  • Rakhi Chakraborty
  • Swarnendu RoyEmail author
Research Article


NAC transcription factors (TFs) are one of the largest and important TF family that are involved in the regulation of plant growth and development. They are characterized by a highly conserved N-terminal domain and a variable C-terminal domain. In the present study, the amino acid sequences of NAC TFs from four embryophytic plant species viz. Arabidopsis thaliana (Angiosperm), Picea abies (Gymnosperm), Selaginella moellendorffii (Pteridophyte) and Physcomitrella patens (Bryophyte) as reference of the different plant groups were collected from the Plant Transcription Factor Database (PTFD) and the phylogenetic relationships were evaluated. The phylogenetic tree revealed that the majority of the NAC members were interspersed in the major subgroups that indicated the expansion of the NAC members predates the speciation events. Thirty one (31), five (05), one (1) and ten (10) paralog pairs were determined respectively for Arabidopsis, Picea, Selaginella and Physcomitrella. The structure–function relationship of paralog pairs were inferred from the phylogenetic tree of combined set of paralogous gene pairs by studying the prevalence of flanking regions and motif analysis of the NAC proteins. The motif analysis revealed the presence of an N-terminal conserved domain, a characteristic of the majority of NAC family proteins. Conserved motifs in the C-terminal region were absent in the majority of the protein sequences except few members in Arabidopsis and Physcomitrella. Also the time of gene duplication of the paralog pairs were calculated that revealed the duplication events occurred between 4.48 and 45.94 MYA Arabidopsis, 167.57–532.86 MYA in Picea, and 29.12–53.53 MYA in Physcomitrella.


NAC transcription factors Phylogenetic tree Gene duplication Motif analysis Conserved domain 



The corresponding author is grateful to Dr. Vinay Singh, Information Officer, Centre for Bioinformatics, Banaras Hindu University, Varanasi, India for providing valuable inputs for the present study. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857CrossRefGoogle Scholar
  2. Arsovski AA, Pradinuk J, Guo XQ, Wang S, Adams KL (2015) Evolution of cis-regulatory elements and regulatory networks in duplicated genes of Arabidopsis. Plant Physiol 169(4):2982–2991Google Scholar
  3. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208CrossRefGoogle Scholar
  4. Banks JA (2009) Selaginella and 400 million years of separation. Annu Rev Plant Biol 60:223–238CrossRefGoogle Scholar
  5. Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. PNAS 107(43):18724–18728CrossRefGoogle Scholar
  6. Bilas R, Szafran K, Hnatuszko-Konka K, Kononowicz AK (2016) Cis-regulatory elements used to control gene expression in plants. Plant Cell Tiss Org 127(2):269–287CrossRefGoogle Scholar
  7. Buschiazzo E, Ritland C, Bohlmann J, Ritland K (2012) Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol 12:8CrossRefGoogle Scholar
  8. De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inze A, Ng S, Ivanova A, Rombaut D, Van de Cotte B, Jaspers P, Van de Peer Y, Kangasjarvi J, Whelan J, Van Breusegem F (2013) The membrane bound NAC transcription factor ANAC013 is a regulator of mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25(9):3472–3490CrossRefGoogle Scholar
  9. Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genom 280:535–546CrossRefGoogle Scholar
  10. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545Google Scholar
  11. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119CrossRefGoogle Scholar
  12. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300CrossRefGoogle Scholar
  13. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987–12992CrossRefGoogle Scholar
  14. Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297CrossRefGoogle Scholar
  15. Hu W, Yang H, Yan Y, Wei Y, Tie W, Ding Z, Zuo J, Peng M, Kaimian L (2016) Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep 6:22783CrossRefGoogle Scholar
  16. Hughes AL, Friedman R (2003) Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Res 13(5):794–799CrossRefGoogle Scholar
  17. Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65(1–2):137–150CrossRefGoogle Scholar
  18. Jensen MK, Kjaersgaard T, Petersen K, Skriver K (2010) NAC genes: time-specific regulators of hormonal signaling in Arabidopsis. Plant Signal Behav 5(7):907–910CrossRefGoogle Scholar
  19. Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Choi YD, Kim M, Reuzeau C, Kim J-K (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197CrossRefGoogle Scholar
  20. Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(D1):182–187CrossRefGoogle Scholar
  21. Keeley JE (2012) Ecology and evolution of pine life histories. Ann For Sci 69(4):445–453CrossRefGoogle Scholar
  22. Kenrick P (2000) The relationships of vascular plants. Phil Trans R Soc Lond B 355:847–855CrossRefGoogle Scholar
  23. Kikuchi S (2014) Genome-wide view of the expression profiles of NAC-domain genes in response to infection by rice viruses. In: Benkeblia N (ed) Omics technologies and crop improvement. CRC Press, Baca Raton, pp 127–152CrossRefGoogle Scholar
  24. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498CrossRefGoogle Scholar
  25. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, de Pamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885CrossRefGoogle Scholar
  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  27. Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276CrossRefGoogle Scholar
  28. Li WH, Gojobori T (1983) Rapid evolution of goat and sheep globin genes following gene duplication. Mol Biol Evol 1(1):94–108Google Scholar
  29. Li J, Yuan J, Li M (2014) Characterization of putative cis-regulatory elements in genes preferentially expressed in Arabidopsis male meiocytes. BioMed Res Int 2014: Article ID 708364Google Scholar
  30. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226CrossRefGoogle Scholar
  31. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103CrossRefGoogle Scholar
  32. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44CrossRefGoogle Scholar
  33. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248CrossRefGoogle Scholar
  34. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87CrossRefGoogle Scholar
  35. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247CrossRefGoogle Scholar
  36. Pascual MB, Canovas FM, Avila C (2015) The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol 15:254CrossRefGoogle Scholar
  37. Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444(1–2):10–23CrossRefGoogle Scholar
  38. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381CrossRefGoogle Scholar
  39. Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:130CrossRefGoogle Scholar
  40. Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R (2016) Erratum to: an ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 16:184CrossRefGoogle Scholar
  41. Schaefer DG, Zryd J-P (2001) The moss Physcomitrella patens, now and then. Plant Physiol 127(4):1430–1438CrossRefGoogle Scholar
  42. Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902CrossRefGoogle Scholar
  43. Shen H, Yin Y, Chen F, Xu Y, Dixon RA (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenerg Res 2:217–232CrossRefGoogle Scholar
  44. Singh LN, Hannenhalli S (2008) Functional diversification of paralogous transcription factors via divergence in DNA binding site motif and in expression. PLoS ONE 3(6):e2345CrossRefGoogle Scholar
  45. Solovyev VV, Shahmuradov IA, Salamov AA (2010) Identification of promoter regions and regulatory sites. Method Mol Biol 674:57–83CrossRefGoogle Scholar
  46. Soltis PS, Soltis DE (2013) A conifer genome spruces up plant phylogenomics. Genome Biol 14(6):122CrossRefGoogle Scholar
  47. Souer E, Van Houwelingen A, Kloos D, Mol JNM, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170CrossRefGoogle Scholar
  48. Su H, Zhang S, Yuan X, Chen C, Wang XF, Hao YJ (2013) Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1, 2-CUC2 transcription factor family in apple. Plant Physiol Biochem 71:11–21CrossRefGoogle Scholar
  49. Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612CrossRefGoogle Scholar
  50. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498CrossRefGoogle Scholar
  51. Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39CrossRefGoogle Scholar
  52. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301CrossRefGoogle Scholar
  53. Xie Q, Frugis G, Colgan D, Chua N (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036CrossRefGoogle Scholar
  54. Yang X, Tuskan GA, Cheng MZ (2006) Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 142:820–830CrossRefGoogle Scholar
  55. Yang Z, Zhou Y, Wang X, Gu S, Yu J, Liang G, Yan C, Xu C (2008) Genomewide comparative phylogenetic and molecular evolutionary analysis of tubby-like protein family in Arabidopsis, rice, and poplar. Genomics 92:246–253CrossRefGoogle Scholar
  56. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298CrossRefGoogle Scholar
  57. Zhu T, Nevo E, Sun D, Peng J (2012) Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 66(6):1833–1848CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  1. 1.Department of BotanyA.P.C. Roy Govt. CollegeMatigara, SiliguriIndia
  2. 2.Molecular and Analytical Biochemistry Laboratory, Department of BotanyUniversity of Gour BangaMokdumpur, MaldaIndia

Personalised recommendations