Advertisement

Physiology and Molecular Biology of Plants

, Volume 24, Issue 4, pp 655–663 | Cite as

Genetic diversity and population structure of Litsea glutinosa (Lour.) in Central India

  • Naseer Mohammad
  • Ankur Dahayat
  • Manorama Yadav
  • Fatima Shirin
  • S. A. Ansari
Research Article

Abstract

Litsea glutinosa (Lour.), one of the most dwindling forest species in central India, is represented by highly fragmented populations that have been drastically reduced for the last 40 years, promulgating government ban on its extraction. For the first time with the help of ISSR markers, we investigated genetic variation and population structure of L. glutinosa in central Indian states. A total of 84 genotypes from 10 populations covering the entire potential pockets of the species in central India were collected. The percentage of polymorphic loci ranged from 44.79% (Rewa) to 94.79% (Marvahi) with a mean value of 70.10%. The sampled populations harbored high level of genetic diversity (mean h = 0.294 and I = 0.424) that was partitioned more within populations (73%) than between populations (27%). Bayesian structure analysis revealed the existence of four admixed genetic pools in L. glutinosa. The unsustainable extraction rather than genetic factor seems to be responsible for population fragmentation and dwindling status of this species. The dioecious nature of the species advocates an in-situ conservation to be the most suited approach for which Chhindwara, Jagdalpur, Balaghat and Jabalpur populations are appropriate.

Keywords

Conservation Genetic diversity Population structure Litsea glutinosa 

Notes

Acknowledgements

The authors are thankful to the Director, Tropical Forest Research Institute, Jabalpur (Madhya Pradesh) for providing necessary facilities for the investigation. Logistic support provided by Madhya Pradesh and Chhattisgarh State Forest Department is also acknowledged. Investigation is financially supported by Indian Council of Forestry Research and Education, Dehradun, under the project id: 205/TFRI/2013/Gen-2(29).

References

  1. Abuzayed M, El-Dabba N, Frary A, Doganlar S (2016) GDdom: an online tool for calculation of dominant marker gene diversity. Biochem Genet 55(2):155–157CrossRefPubMedGoogle Scholar
  2. Atwell BJ, Kriedemann PE, Turnbull CGN (1999) Plants in action-adaptation in nature, performance in cultivation. Macmillan Education Australia Pty Ltd, MelbourneGoogle Scholar
  3. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  4. Ci XQ, Chen JQ, Li QM, Li J (2008) AFLP and ISSR analysis reveals high genetic variation and inter-population differentiation in fragmented populations of the endangered Litsea szemaois (Lauraceae) from Southwest China. Plant Syst Evol 273:237–246CrossRefGoogle Scholar
  5. Das D, Maiti S, Maiti TK, Islam SS (2013) A new arabinoxylan from green leaves of Litsea glutinosa (Lauraeae): structural and biological studies. Carbohyd Polym 92(2):1243–1248CrossRefGoogle Scholar
  6. Dev S (2006) A selection of prime ayurvedic plant drugs: ancient-modern concordance. Anmaya Publishers, New DelhiGoogle Scholar
  7. Devi P, Meera R (2010) Study of antioxidant, anti-inflammatory and wound healing activity of extracts of Litsea glutinosa. J Pharm Sci Res 2(2):155–163Google Scholar
  8. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15Google Scholar
  9. Dubey PC, Khanna KK, Sikarwar RLS, Tewari AP (2007) Threat assessment of plant diversity in Amarkantak area. In: Joshi KC, Mandal AK (eds) Proceedings of the wokshop research needs for achanakmar-amarkantak biosphere reserve held at tropical forest research institute, JabalpurGoogle Scholar
  10. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361CrossRefGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  12. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  13. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longmans Green, HarlowGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  15. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  16. Frankham R (2005) Stress and adaptation in conservation genetics. J Evol Biol 18:750–755CrossRefPubMedGoogle Scholar
  17. Frankham R, Ballou JD, Briscoe DA, McInnes KH (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Gaafar ARZ, Al-Qurainy F, Khan S (2014) Assessment of genetic diversity in the endangered populations of Breonadia salicina (Rubiaceae) growing in The Kingdom of Saudi Arabia using inter-simple sequence repeat markers. BMC Genet 15:109.  https://doi.org/10.1186/s12863-014-0109-4 CrossRefPubMedPubMedCentralGoogle Scholar
  19. GISD (2012) Global invasive species database. invasive species specialist group of the IUCN. http://www.iucngisd.org/gisd/. Accessed 05 Dec 2013
  20. Gordon SP, Sloop CM, Davis HG, Cushman JH (2012) Population genetic diversity and structure of two rare vernal pool grasses in central California. Conserv Genet 13:117–130CrossRefGoogle Scholar
  21. Haque I, Bandopadhyay R, Mukhopadhyay K (2010) Population genetic structure of the endangered and endemic medicinal plant Commiphora wightii. Mol Biol Rep 37:847.  https://doi.org/10.1007/s11033-009-9661-9 CrossRefPubMedGoogle Scholar
  22. Hogbin PM, Peakall R (1999) Evaluation of the contribution of genetic research to the management of the endangered plant. Zieria prostrata. Conserv Biol 13:514–522CrossRefGoogle Scholar
  23. Junqiu C, Xiuqin Ci, Qi Li (2006) Genetic diversity of Litsea szemaois, an endangered species endemic to China, detected by inter simple sequence repeat (ISSR). Biodivers Sci 14(5):410–420CrossRefGoogle Scholar
  24. Kaljund K, Jaaska V (2010) No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcate. Biochem Syst Ecol 38:510–520CrossRefGoogle Scholar
  25. Kaneko S, Isagi Y, Nobushima F (2008) Genetic differentiation among populations of an oceanic island: the case of Metrosideros boninensis, an endangered endemic tree species in the Bonin Islands. Plant Species Biology 23:119–128CrossRefGoogle Scholar
  26. Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738PubMedPubMedCentralGoogle Scholar
  27. Kirtikar KR, Basu BD (1981) Indian medicinal plants. Lalit Mohan Basu Publication, AllahabadGoogle Scholar
  28. Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78(2):320–335CrossRefGoogle Scholar
  29. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Eco 94:942–952Google Scholar
  30. Lewontin RC (1972) Testing the theory of natural selection. Nature 236:181–182CrossRefGoogle Scholar
  31. Li YY, Guan SM, Yang SZ, Luo Y, Chen XY (2012) Genetic decline and inbreeding depression in an extremely rare tree. Conserv Genet 13:343–347CrossRefGoogle Scholar
  32. Lopes MS, Mendonca D, Bettencourt SX, Borba AR, Melo C, Baptista C, Machado AC (2014) Genetic diversity of an Azorean endemic and endangered plant species inferred from inter-simple sequence repeat markers. AoB Plants.  https://doi.org/10.1093/aobpla/plu034 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994CrossRefPubMedGoogle Scholar
  34. Mariette S, Cottrell J, Csaikl U (2002) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genet 51:72–79Google Scholar
  35. Mohapatra KP, Sehgal RN, Sharma RK, Mohapatra T (2009) Genetic analysis and conservation of endangered medicinal tree species Taxus wallichiana in the Himalayan region. New Forest 37:109–121CrossRefGoogle Scholar
  36. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedGoogle Scholar
  37. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590PubMedPubMedCentralGoogle Scholar
  38. Panda S, Naik D, Kamble A (2015) Population structure and genetic diversity of the perennial medicinal shrub Plumbago. AoB Plants.  https://doi.org/10.1093/aobpla/plv048 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  40. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  41. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  43. Prusti A, Mishra SR, Sahoo S, Mishra SK (2008) Antibacterial activity of some Indian medicinal plants. Ethnobotanical Leaflets 12:227–230Google Scholar
  44. Puhua H, Jie L, Xiwen L, van der Werff H (2008) LITSEA Lamarck, encycl. 3: 574. 1792, nom. cons. Flora China 7:118–141Google Scholar
  45. Ramasamy KR, Ramasamy S, Bindroo BB, Naik VG (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. Springer Plus 3:431.  https://doi.org/10.1186/2193-1801-3-431 CrossRefPubMedGoogle Scholar
  46. Ranker TA (1994) Evolution of high genetic variability in the rare Hawaiian fern Adenophorus periens and implications for conservation management. Biol Conserv 70:19–24CrossRefGoogle Scholar
  47. Rath B (2003) The endangered bark. In: Sustainable production of wood and non-wood forest products, Proceedings of the IUFRO Division 5, Research Groups 5.11 and 5.12, Rotorua, New Zealand, March 11–15, pp 75–81Google Scholar
  48. Rath B (2004) Medicinal properties of Litsea glutinosa and Litsea monopetala. e-Planet 2(2):94–95Google Scholar
  49. Rodrigues L, van den Berg C, Póvoa O, Monteiro A (2013) Low genetic diversity and significant structuring in the endangered Mentha cervina populations and its implications for conservation. Biochem Syst Ecol 50:51–61CrossRefGoogle Scholar
  50. Rossetto M, Weaver PK, Dixon KW (1995) Use of RAPD analysis in devising conservation strategies for the rare and endangered Grevillea scapigera (Proteaceae). Mol Ecol 4:357–364CrossRefGoogle Scholar
  51. Singh P, Nag A, Parmar R, Ghosh S, Bhau BS, Sharma RK (2015) Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation. J Genet 94:697–704CrossRefPubMedGoogle Scholar
  52. Staub JE, Danin-Poleg Y, Fazio G, Horejsi T, Reis N, Katzir N (2000) Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica 115:225–241CrossRefGoogle Scholar
  53. Szczecińska M, Sramko G, Wołosz K, Sawicki J (2016) Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) mill in east central Europe. PLoS ONE.  https://doi.org/10.1371/journal.pone.0151730 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Vaishnaw V, Mohammad Naseer, Wali SA, Kumar R, Tripathi SB, Negi MS, Ansari SA (2015) AFLP markers for analysis of genetic diversity and structure of teak (Tectona grandis) in India. Can J For Res 45:297–306CrossRefGoogle Scholar
  55. WenHui QIN, Xu F, YaoHua L, JinYing N, Rui G (2012) GC-MS analysis of the essential oils from fresh and dry leaves of Litsea glutinosa (Lour.) C. B. Rob. Med Plant 3(11):7–9Google Scholar
  56. Wu FQ, Shen SK, Zhang XJ, Wang YH, Sun WB (2015) Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. AoB Plants.  https://doi.org/10.1093/aobpla/plu082 CrossRefGoogle Scholar
  57. Yeh FC, Yang RC, Boyle, Timothy BJ, Ye ZH, Mao JX (2000) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotech Centre, University of Alberta, Canada. https://sites.ualberta.ca/~fyeh/popgene_info.html. Accessed 12 Jan 2017
  58. Zhao XF, Ma YP, Sun WB, Wen X, Milne R (2012) High genetic diversity and low differentiation of Michelia coriacea (Magnoliaceae), a critically endangered endemic in southeast Yunnan, China. Int J Mol Sci 13:4396–4411CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Naseer Mohammad
    • 1
  • Ankur Dahayat
    • 1
  • Manorama Yadav
    • 1
  • Fatima Shirin
    • 1
  • S. A. Ansari
    • 2
  1. 1.Tropical Forest Research InstituteJabalpurIndia
  2. 2.Institute of Forest ProductivityRanchiIndia

Personalised recommendations