Physiology and Molecular Biology of Plants

, Volume 24, Issue 4, pp 703–710 | Cite as

Elimination of macro elements from inoculation and co-cultivation media enhances the efficiency of Agrobacterium-mediated transformation in Petunia

  • Aso Nobakht Vakili
  • Hedayat BagheriEmail author
  • Pejman Azadi
Research Article


In order to evaluate the effect of inoculation and co-cultivation media elements on transformation frequency in Petunia hybrida, modified MS media with different elements were tested on Alvan and Large Flower Alvan (LF Alvan), two local cultivars. Leaf explants of both cultivars were inoculated with Agrobacterium tumefaciens strain LBA4404 (pBI121) containing neomycin phosphotransferase (nptII) and an intron-containing β-glucuronidase (gus) genes. When medium lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used as inoculation and co-cultivation medium, a higher frequency of transformation for Alvan (22%) and LF Alvan (16%) was obtained. Kanamycin resistant plantlets were stained blue by GUS assay. Furthermore, polymerase chain reaction (PCR) analysis revealed the presence of both gus and nptII genes in all putative transformants. Finally, southern blot hybridization confirmed insertion of 1–4 copies of gus gene in transgenic plants.


Macro elements Co-cultivation Agrobacterium tumefaciens Transformation Petunia hybrida 


LF Alvan

Large Flower Alvan




Cetyltrimethylammonium bromide


Neomycin phosphotransferase


Cauliflower mosaic virus



This work was supported by Bu-ali Sina University, Hamedan, Iran, and Novin Giti Gene Biotech. Co. Biotechnology Incubator Center of National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.


  1. Azadi P, Chin DP, Kuroda K, Khan RS, Mii M (2010a) a) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Organ Culture 101:201–209. CrossRefGoogle Scholar
  2. Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa N, Mii M (2010b) b) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280. CrossRefGoogle Scholar
  3. Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotech Lett 33:1249–1255CrossRefGoogle Scholar
  4. Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status biotechnology advances in genetic engineering of ornamental plants. Biotechnol Adv 34(6):1073–1090CrossRefPubMedGoogle Scholar
  5. Chen P, Wang ChK, Soong ShCh (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insersion from transgenic plants. Molecular Breeding. Inst Bioagric Sci 11:287–293Google Scholar
  6. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980CrossRefPubMedPubMedCentralGoogle Scholar
  7. Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR–PhoB regulatory system. J Bacteriol 186:4492–4501CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doyle JJ, Doyle JL (1987) A rapid DNA isolation from small amount of fress tissue. Phytochem Bull 19:11–15Google Scholar
  9. Drummond RS, Martinezsanchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD, Karunairetnam S, Snowden KC (2009) Petunia hybrida carotenoid clieavage dioxygenase7 is involved in the production of negative and positive branching signals in Petunia. Plant Physiol 151:1867–1877CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dupre´ P, Lacoux J, Neutelings G, Mattar-Laurain D, Fliniaux MA, David A, Jacquin-Dubreuil A (2000) Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiol Plant 108:413–419CrossRefGoogle Scholar
  11. Durland RH, Toukdarian A, Fang F, Helinski DR (1990) Mutations in the trfA replication gene of the broad-host-range plasmid RK2 result in elevated plasmid copy numbers. J Bacteriol 172(7):3859–3867CrossRefPubMedPubMedCentralGoogle Scholar
  12. Flego D, Pirhonen M, Saarilahti H, Palva TK, Palva ET (1997) Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol Microbiol 25:831–838CrossRefPubMedGoogle Scholar
  13. Fraley RT, Horsch RB, Mtzke MD, Chilton W, Sanders P (1984) In vitro transformation of Petunia cells by an improved method of co-cultivation with A.tumefaciens strains. Plant Mol Biol 3:371–378CrossRefPubMedGoogle Scholar
  14. Grates T, Vandenbussche M (2005) A model system for comparative research: petunia. Trends Plant Sci 10:251–256CrossRefGoogle Scholar
  15. Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22:359–364CrossRefPubMedGoogle Scholar
  16. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO J 6:3901–3907. PubMedCrossRefGoogle Scholar
  17. Ke XY, McCormac AC, Harvey A, Lonsdale D, Chen DF, Elliott MC (2002) Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica 126(3):333–343CrossRefGoogle Scholar
  18. Li F, Li Ch, Li M, Yu M, Fand Ch, Wang Sh (2013) Microspores and Agrobacterium-mediated transient expression of β-glucuronidase (GUS) reporter gene. Int J Agric Biol 15:1098–1104Google Scholar
  19. Lutke WK (2006) Petunia (Petunia hybrida). Methods Mol Biol 344:339–349PubMedGoogle Scholar
  20. Machado LDOR, De Andrade GM, Barrueto Cid LP, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis × E. urophylla). Plant Cell Rep 16:299–303. CrossRefGoogle Scholar
  21. McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127CrossRefPubMedGoogle Scholar
  22. Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferriere N (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855. CrossRefGoogle Scholar
  23. Pandian A, Hurlstone C, Liu Q, Singh S, Salisbury P, Green A (2006) Agrobactrium-Mediated transformation protocol to overcome necrosis in elite Australian Brassica Juncea Lines. Plant Mol Bio Rep 24:103a–iCrossRefGoogle Scholar
  24. Phelep M, Petit A, Martin L, Duhoux E, Tempe J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Biotechnology 9:461–466Google Scholar
  25. Romantschuk M (1992) Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225–243CrossRefPubMedGoogle Scholar
  26. Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Razavi K, Ntui VO (2013) A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell Tissue Organ Culture 113:1–9. CrossRefGoogle Scholar
  27. Sharafi A, Sohi HH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20(2):257–262CrossRefPubMedPubMedCentralGoogle Scholar
  28. Subramoni S, Nathoo N, Klimov E, Yuan Z (2014) Agrobacterium tumefaciens response to plant-derived signaling molecules. Front Plant Sci 5:322–333. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Thirukumaran G, Ntuni VO, Khan RS, Mii M (2009) Thidiazuron: an efficient plant growth regulator for enhancing Agrobacterium-mediated transformation in Petunia hybrida. Plant Cell Tissue Organ Culture 99:109–115. CrossRefGoogle Scholar
  30. Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis. Plant Cell Rep 16:26–31CrossRefPubMedGoogle Scholar
  31. Valizadeh Kaji B, Ershadi A, Tohidfar M (2013) Agrobacterium-Mediated Transformation of Pomegranate (Punica granatum L.) ‘Yousef Khani’ Using the gus Reporter Gene. Int J Hortic Sci Technol 1:31–41Google Scholar
  32. Van der Meer IM (1999) Agrobacterium-mediated transformation of Petunia leaf disks. Plant Cell Culture Protoc 111:327–334CrossRefGoogle Scholar
  33. Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172:2433–2438CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wylie SJ, Tjokrokusumo D, MCCOMB JA (2003) Transformation of Petunia hybrida by the Agrobacterium suspension drop method. Mol Methods Plant, Analysis Vol, p 23Google Scholar
  35. Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107(7):1157–1168. CrossRefPubMedGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Aso Nobakht Vakili
    • 1
  • Hedayat Bagheri
    • 2
    Email author
  • Pejman Azadi
    • 3
  1. 1.Department of Biotechnology, Faculty of AgricultureBu Ali-Sina UniversityHamedanIran
  2. 2.Department of Plant Biotechnology, Faculty of AgricultureBu Ali-Sina UniversityHamedanIran
  3. 3.Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII)Agricultural Research, Education and Extension Organization (AREEO)KarajIran

Personalised recommendations