Advertisement

Easy strategy used to detect the genetic variability in chickpea (Cicer arietinum L.)

  • E. Valadez-Moctezuma
  • A. J. Cabrera-Hidalgo
Research Article

Abstract

A priority in the management and use of elite plant materials for breeding has been based on molecular markers or DNA sequencing of entire genomes, in order to perform genetic differentiation which is still quite costly. Chickpea (Cicer arietinum) is one of the species with genomic monotony and very low polymorphism, and its detection even with DNA markers has not been easy. In germplasm banks, the genetic distinction is a priority in order to use properly selected lines. In this study, 57 chickpea accessions from a germplasm bank were analyzed by using nrRAMP (non-radioactive Random Amplified Microsatellite Polymorphism) markers, and their genetic variability was determined. Our results showed DNA polymorphisms, which are enough to differentiate between the accessions and between C. arietinum and Cicer reticulatum (out-group); this last wild species is closely related to chickpea. We concluded that the nrRAMP technique was an effective and a highly useful method to assess the genetic diversity and variability among closely related plants, such as chickpea; in addition, this technique can be easily implemented in laboratories.

Keywords

Chickpea DNA markers Genetic diversity nrRAMP 

Supplementary material

12298_2018_548_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. Ahmad F, Khan AI, Awan FS, Sadia B, Sadaqat HA, Bahadur S (2010) Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as revealed by RAPD analysis. Gen Mol Res 9:1414–1420CrossRefGoogle Scholar
  2. Alanís-Martínez I, Medina-Mendoza C, Marban-Mendoza N, Valadez-Moctezuma E (2015) Técnicas moleculares clásicas para la diferenciación de formas especiales de Fusarium oxysporum. Revista Mexicana de Micología 42:1–7Google Scholar
  3. Aslam M, Maqbool MA, Akhtar S, Faisal W (2013) Estimation of genetic variability and association among different physiological traits related to biotic stress (Fusarium oxysporum l.) in chickpea. J Anim Plant Sci 23:1679–1685Google Scholar
  4. Avila-Treviño JA, Muñóz-Alemán JM, Pérez-Molphe-Balch E, Rodríguez-Sahagún A, Morales-Domínguez JF (2017) In vitro propagation from bud and apex explants of Moringa oleifera and evaluation of the genetic stability with RAMP marker. S Afr J Bot 108:149–156CrossRefGoogle Scholar
  5. Cheng HY, Yang WC, Hsiao JY (2001) Genetic diversity and relationship among peach cultivars based on Random Amplified Microsatellite Polymorphism (RAMP). Bot Bull Acad Sin 42:201–206Google Scholar
  6. Dávila JA, Loarce Y, Ferrer E (1999) Molecular characterization and genetic mapping of random amplified mirosatellite polymosphism in barley. Theor Appl Genet 98:265–273CrossRefGoogle Scholar
  7. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21CrossRefGoogle Scholar
  8. Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–302CrossRefGoogle Scholar
  9. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321CrossRefPubMedGoogle Scholar
  10. Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217CrossRefPubMedGoogle Scholar
  11. Kazan K, Muehlbauer FJ (1991) Allozyme variation and phylogeny in annual species of Cicer (Leguminosae). Plant Syst Evol 175:11–21CrossRefGoogle Scholar
  12. Keneni G, Bekele E, Imtiaz M, Dagne K, Getu E, Assefa F (2012) Genetic diversity and population structure of Ethiopian chickpea (Cicer arietinum L.) germplasm accessions from different geographical origins as revealed by microsatellite markers. Plant Mol Biol Report 30:654–665CrossRefGoogle Scholar
  13. Lihua Z, Mingyang L, Guangze C, Tianchun P, Chenghai S (2013) Assessment of the genetic diversity and genetic relationships of pomegranate (Punica granatum L.) in China using RAMP markers. Sci Hortic 151:63–67CrossRefGoogle Scholar
  14. Nguyen TT, Taylor PWJ, Redden RJ, Ford R (2003) Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed 123:173–179CrossRefGoogle Scholar
  15. Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70CrossRefPubMedGoogle Scholar
  16. Provan J, Thomas WTB, Forster BP, Powel W (1999) Copia-SSR: a simple marker technique which can be used on total genomic DNA. Genome 42:363–366CrossRefGoogle Scholar
  17. Robertson LD, Ocampo B, Singh KB (1997) Morphological variation in wild annual Cicer species in comparison to the cultigen. Euphytica 95:309–319CrossRefGoogle Scholar
  18. Saeed A, Hovsepyan H, Darvishzadeh R, Imtiaz M, Panguluri SK, Nazaryan R (2011) Genetic diversity of Iranian accessions, improved lines of chickpea (Cicer arietinum L.) and their wild relatives by using simple sequence repeats. Plant Mol Biol Report 29:848–858CrossRefGoogle Scholar
  19. Sánchez de la Hoz MP, Dávila JA, Loarce Y, Ferrer E (1996) Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome 39:112–117CrossRefPubMedGoogle Scholar
  20. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119CrossRefGoogle Scholar
  21. Talebi R, Rokhzadi A (2013) Genetic diversity and interrelationships between agronomic traits in landrace chickpea accessions collected from ‘Kurdistan’ province, North-west of Iran. Int J Agric Crop Sci 5:2203–2209Google Scholar
  22. Udupa SM, Sharma A, Sharma RP, Pai RA (1993) Narrow genetic variability in Cicer arietinum L. as revealed by RFLP analysis. J Plant Biochem Biotechnol 2:83–86CrossRefGoogle Scholar
  23. Upadhyaya HD, Dwivedi SL, Baum M, Varshney RK, Udupa SM, Gowda CLL, Hoisington D, Singh S (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106–118CrossRefPubMedPubMedCentralGoogle Scholar
  24. Valadez-Moctezuma E, Kahl G, Rubluo-Islas A, Arreguín de los Monteros R (2005) Optimización de las huellas de DNA obtenidas con RAPDs y MP-PCR mediante la técnica nrRAMP. Revista Chapingo Serie Horticultura 11:351–356CrossRefGoogle Scholar
  25. Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11:438–448CrossRefPubMedGoogle Scholar
  26. Wu K, Jones R, Danneberger L, Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acid Res 22:3257–3258CrossRefPubMedGoogle Scholar
  27. Yang RW, Zhou YH, Zhang Y, Zheng YL, Ding CB (2006) The genetic diversity among Leymus species based on random amplified microsatellite polymorphism (RAMP). Genet Resour Crop Evol 53:139–144CrossRefGoogle Scholar
  28. Zhang L, Zhou Y, Wei Y, Zheng Y, Liu S (2003) Relationships among Kengyilia species based on random amplified microsatellite polymorphism (RAMP). High Technol Lett 4:28–33Google Scholar
  29. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefPubMedGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  1. 1.Laboratorio de Biología Molecular, Departamento de FitotecniaUniversidad Autónoma ChapingoChapingoMexico

Personalised recommendations