Advertisement

Physiology and Molecular Biology of Plants

, Volume 24, Issue 4, pp 643–654 | Cite as

Diversity and spatial genetic structure of natural Moroccan Quercus susber L. assessed by ISSR markers for conservation

  • Amal Laakili
  • Bouchra Belkadi
  • Leila Medraoui
  • Mohammed Alami
  • Chaimaa Yatrib
  • Ouafae Pakhrou
  • Mohamed Makhloufi
  • Salwa El Antry
  • Ahmed Laamarti
  • Abdelkarim Filali-Maltouf
Research Article
  • 43 Downloads

Abstract

Morocco is one of the most important regions of the world in terms of Quercus suber L. number and variation. This species is in decline due to several factors, which can lead to permanent loss of this resource. It would be essential to evaluate the genetic diversity in order to conserve maximum genetic variability of this species. The genetic diversity and differentiation of 16 sites from five regions representing the entire range of Moroccan Cork Oak were assessed. Twenty-three ISSR primers used generated 985 polymorphic fragments with an average of 42.8 bands per primer and showed 100% of polymorphism. The 173 individuals revealed a moderate level of genetic diversity at species level (I = 0.27, He = 0.161). The AMOVA showed that the highest level of diversity occurred within populations (64%), this was also confirmed by the coefficient of differentiation (Gst = 0.47). The estimated gene flow (Nm = 0.56) and the Mantel test revealed a significant correlation between geographic and genetic diversity (r = 0.266; p = 0.001). This genetic structure was further shown by the topology of the UPGMA, sPCA and STRUCTURE analysis. In addition, a core collection of 34 genotypes was established representing the essential diversity detected. This research advocates populations and individuals to preserve in order to improve and conserve this resource in the future.

Keywords

Quercus suber L. Genetic diversity ISSR Population structure Core collection Morocco 

Notes

Acknowledgements

This work was supported by Hassan II Academy of Sciences and Technology (Morocco). We express our deep gratitude to all forest technicians who contributed to the collection of plant material throughout Morocco.

References

  1. Alfonso-Corrado C, Esteban-Jiménez R, Clark-Tapia R et al (2005) Clonal and genetic structure of two Mexican oaks: Quercus eduardii and Quercus potosina (Fagaceae). Evol Ecol 18:585–599CrossRefGoogle Scholar
  2. Ansari SA, Narayanan C, Wali SA et al (2012) ISSR markers for analysis of molecular diversity and genetic structure of Indian teak (Tectona grandis Lf) populations. Ann For Res 55:3Google Scholar
  3. Audigeos D, Brousseau L, Traissac S et al (2013) Molecular divergence in tropical tree populations occupying environmental mosaics. J Evol Biol 26:529–544CrossRefPubMedGoogle Scholar
  4. Belahbib N, Pemonge M-H, Ouassou A et al (2001) Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Mol Ecol 10:2003–2012CrossRefPubMedGoogle Scholar
  5. Belahbib N, Ouassou A, Dahmani J, Douira A (2004) Contribution à l’étude de l’introgression génétique entre Quercus suber L et Q. rotundifolia (Lamk.) Trabut au Maroc par l’utilisation des marqueurs microsatellites. Bull Inst Sci Rabat Sect Sci Vie 26–27:31–34Google Scholar
  6. Coelho AC, Lima MB, Neves D, Cravador A (2006) Genetic diversity of two evergreen oaks (Quercus suber L. and Q. ilex rotundifolia Lam.) in Portugal using AFLP markers. Silvae Genet 55:105–118Google Scholar
  7. Cottrell JE, Munro RC, Tabbener HE et al (2003) Comparison of fine-scale genetic structure using nuclear microsatellites within two British oak woods differing in population history. For Ecol Manag 176:287–303CrossRefGoogle Scholar
  8. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  9. Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  10. Elena-Rossello JA, Cabrera E (1996) Isozyme variation in natural populations of cork-oak (Quercus suber L.) Population structure, diversity, differentiation and gene flow. Silvae Genetica 45:229–239Google Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  12. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  13. Fofana IJ, Ofori D, Poitel M, Verhaegen D (2009) Diversity and genetic structure of teak (Tectona grandis L.f) in its natural range using DNA microsatellite markers. New For 37:175–195CrossRefGoogle Scholar
  14. Gandour M, Khouja ML, Toumi L, Triki S (2007) Morphological evaluation of cork oak (Quercus suber): Mediterranean provenance variability in Tunisia. Ann For Sci 64:549–555.  https://doi.org/10.1051/forest:2007032 CrossRefGoogle Scholar
  15. Ge X-J, Yu Y, Zhao N-X et al (2003) Genetic variation in the endangered Inner Mongolia endemic shrub Tetraena mongolica Maxim. (Zygophyllaceae). Biol Conserv 111:427–434CrossRefGoogle Scholar
  16. GTZ (1997) Les ressources génétique forestières au Maroc peuplement à graines classés et arbres plus. Chêne liège (Quercus suber L.), vol. 6Google Scholar
  17. Hammoudi A (2002) La subéraie: biodiversité et paysage. Haut-commissariat aux eaux et forêts et à la lutte contre la desertification, Maroc. Haut-commissariat aux eaux et forêts et à la lutte contre la desertification, Maroc., VIVEXPO liegeGoogle Scholar
  18. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63Google Scholar
  19. Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Avise JC, Hamrick JL (eds) Conservation genetics: case studies from nature. Chapman & Hall, New York, pp 281–304CrossRefGoogle Scholar
  20. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  21. Huang JC, Sun M (2000) Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet 100:1050–1060CrossRefGoogle Scholar
  22. Kim K-W, Chung H-K, Cho G-T et al (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinforma Oxf Engl 23:2155–2162CrossRefGoogle Scholar
  23. Laakili A, Belkadi B, Gaboun F et al (2016) Analysis of dendrometric diversity among natural populationsof cork oak (Quercus suber L.) from Morocco. Turk J Agric For 40:127–135CrossRefGoogle Scholar
  24. Labra M, Grassi F, Sgorbati S, Ferrari C (2006) Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora Morphol Distrib Funct Ecol Plants 201:468–476CrossRefGoogle Scholar
  25. Li J, Jin Z (2007) Genetic variation and differentiation in Torreya jackii Chun, an endangered plant endemic to China. Plant Sci 172:1048–1053CrossRefGoogle Scholar
  26. Li F, Xia N (2005) Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Bot Bull Acad Sin 46:155–162Google Scholar
  27. Löpez-Aljorna A, Bueno MA, Aguinagalde I, Martín JP (2007) Fingerprinting and genetic variability in cork oak (Quercus suber L.) elite trees using ISSR and SSR markers. Ann For Sci 64:773–779CrossRefGoogle Scholar
  28. Lumaret R, Tryphon-Dionnet M, Michaud H et al (2005) Phylogeographical variation of chloroplast DNA in Cork Oak (Quercus suber). Ann Bot 96:853–861CrossRefPubMedPubMedCentralGoogle Scholar
  29. Magri D, Fineschi S, Bellarosa R et al (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16:5259–5266CrossRefPubMedGoogle Scholar
  30. McDermott J, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373CrossRefGoogle Scholar
  31. Natividade VJ (1950) Subericultura. Ministério da Agricultura, Pescas e Alimentação – Direcção Geral das Florestas, LisbonGoogle Scholar
  32. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedGoogle Scholar
  33. Nybom H (2004) Nybom H comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plans. Mol Ecol 13:1143–1155CrossRefPubMedGoogle Scholar
  34. Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Evol Syst 3:93–114Google Scholar
  35. Pakhrou O, Medraoui L, Yatrib C et al (2017) Assessment of genetic diversity and population structure of an endemic Moroccan tree (Argania spinosa L.) based in IRAP and ISSR markers and implications for conservation. Physiol Mol Biol.  https://doi.org/10.1007/s12298-017-0446-7 Google Scholar
  36. Patel DM, Fougat RS, Sakure AA et al (2016) Detection of genetic variation in sandalwood using various DNA markers. 3 Biotech 6:1–11Google Scholar
  37. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295CrossRefGoogle Scholar
  38. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peinado M (1987) La vegetación de España. Serv Publ Univ Alcalá, MadridGoogle Scholar
  40. Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  41. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  43. Riek JD, Calsyn E, Everaert I et al (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet 103:1254–1265CrossRefGoogle Scholar
  44. Roldán-Ruiz I, Dendauw J, Bockstaele EV et al (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134CrossRefGoogle Scholar
  45. Rubio de Casas R, Cano E, Balaguer L et al (2007) Taxonomic identity of Quercus coccifera L. in the Iberian Peninsula is maintained in spite of widespread hybridisation, as revealed by morphological, ISSR and ITS sequence data. Flora Morphol Distrib Funct Ecol Plants 202:488–499CrossRefGoogle Scholar
  46. Simeone MC, Papini A, Vessella F et al (2009) Multiple genome relationships and a complex biogeographic history in the eastern range of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA variation. Caryologia 62:236–252Google Scholar
  47. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedPubMedCentralGoogle Scholar
  48. Xiao L, Ge X, Gong X et al (2004) ISSR variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Ann Bot 94:133–138CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xu-Mei W, Hou X-Q, Zhang Y-Q et al (2012) Genetic diversity of the endemic and medicinally important plant rheum officinale as revealed by inter-simpe sequence repeat (ISSR) markers. Int J Mol Sci 13:3900–3915CrossRefGoogle Scholar
  50. Yeh FC, Yang RC, Boyle TBJ et al (1999) POPGENE, version 1.31. The user-friendly shareware for population genetic analysisGoogle Scholar
  51. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefPubMedGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Amal Laakili
    • 1
  • Bouchra Belkadi
    • 1
  • Leila Medraoui
    • 1
  • Mohammed Alami
    • 1
  • Chaimaa Yatrib
    • 1
  • Ouafae Pakhrou
    • 1
  • Mohamed Makhloufi
    • 2
  • Salwa El Antry
    • 2
  • Ahmed Laamarti
    • 3
  • Abdelkarim Filali-Maltouf
    • 1
  1. 1.Laboratory of Microbiology and Molecular Biology, Faculty of SciencesMohammed V UniversityRabatMorocco
  2. 2.Department of Forestry and Forest HealthHigh Commission for Water, Forests, and Desertification Control (HCEFLCD), Forestry Research Centre (FRC)Agdal, RabatMorocco
  3. 3.Plant Biotechnology Team, Faculty of SciencesAbdelmalek Essaadi UniversityTétouanMorocco

Personalised recommendations