Physiology and Molecular Biology of Plants

, Volume 24, Issue 3, pp 465–481 | Cite as

Seed protein fraction electrophoresis in peanut (Arachis hypogaea L.) accessions and wild species

  • Apekshita Singh
  • Soom Nath Raina
  • Vijay Rani Rajpal
  • Anurudh K. Singh
Research Article
  • 15 Downloads

Abstract

Total seed storage proteins were studied in 50 accessions of A. hypogaea (11 A. hypogaea ssp. hypogaea var hypogaea, 13 A. hypogaea ssp. hypogaea var hirsuta, 11 A. hypogaea ssp. fastigiata var fastigiata and 15 A. hypogaea ssp. fastigiata var. vulgaris accessions) in SDS PAGE. These accessions were also analysed for albumin and globulin seed protein fractions. Among the six seed protein markers presently used, it was found that globulin fraction showed maximum diversity (77.2%) in A. hypogaea accessions followed by albumin (52.3%), denatured total soluble protein fraction in embryo (33.3%) and cotyledon (28.5%). The cluster analysis based on combined data of cotyledons, embryos, albumins and globulins seed protein fractions demarcated the accessions of two subspecies hypogaea and fastigiata into two separate clusters supported by 51% bootstrap value, with few exceptions, suggesting the genotypes to be moderately diverse. Native and denatured total soluble seed storage proteins were also electrophoretically analysed in 27 wild Arachis species belonging to six sections of the genus. Cluster analysis using different methods were performed for different seed proteins data alone and also in combination. Section Caulorrhizae (C genome) and Triseminatae (T genome) formed one, distantly related group to A. hypogaea and other section Arachis species in the dendrogram based on denatured seed storage proteins data. The present analysis has maintained that the section Arachis species belong to primary and secondary genepools and, sections Procumbenetes and Erectoides belong to tertiary gene pools.

Keywords

Seed storage proteins Albumin Globulin Intraspecific Interspecific Phylogeny 

Notes

Acknowledgements

The first author is thankful to Council for Scientific and Industrial Research (CSIR), India for financial assistance.

Compliance with ethical standards

Conflict of interest

We declare no conflict of interest.

References

  1. Adriaanse A, Klop W, Robbers JE (1969) Characterization of Phaseolus vulgaris cultivars by their electrophoretic pattern. J Sci Food Agric 20:647–650CrossRefGoogle Scholar
  2. Basha SMM (1979) Identification of cultivar differences in seed polypeptide composition of peanuts (Arachis hypogaea L.) by two-dimensional polyacrylamide gel electrophoresis. Plant Physiol 63:301–306CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bechara MD, Moretzsohn MC, Palmieri DA, Monteiro JP, Bacci M, Martins J, Valls JFM, Lopes CR, Gimenes MA (2010) Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences. BMC Plant Biol 10:255CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertozo MR, Valls JFM (2001) Seed storage protein electrophoresis in Arachis pintoi and A. repens (Leguminosae) for evaluating genetic diversity. Genet Res Crop Evol 48:121–130CrossRefGoogle Scholar
  5. Bianchi-Hall CM, Keys RD, Stalker HT, Murphy JP (1993) Diversity of seed storage protein patterns in wild peanut (Arachis, Fabaceae) species. Plant Syst Evol 186:1–15CrossRefGoogle Scholar
  6. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Bravo JP, Hoshino AA, Angelici CMLCD, Lopes CR, Gimenes MA (2006) Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genet Mol Biol 29:516–524CrossRefGoogle Scholar
  8. Calbrix RG, Beilinson V, Stalker HT, Nielsen NC (2012) Diversity of seed storage proteins of Arachis hypogaea and related species. Crop Sci 52:1676–1688CrossRefGoogle Scholar
  9. Cherry JP (1975) Comparative studies of seed protein and enzymes of species and collections of Arachis by gel electrophoresis. Peanut Sci 2:57–65CrossRefGoogle Scholar
  10. Cunha FB, Nobile PM, Hoshino AA, Moretzsohn MC, Lopes CR, Gimenes MA (2008) Genetic relationships among Arachis hypogaea L. (AABB) and diploid Arachis species with AA and BB genomes. Genet Resour Crop Evol 55:15–20CrossRefGoogle Scholar
  11. de Lumen BO (1990) Molecular approaches to improving the nutritional and functional properties of plant seeds as food sources: developments and comments. J Agric Food Chem 38:1779–1788CrossRefGoogle Scholar
  12. Dunhill PM, Fowden L (1965) The amino acids of seeds of Cucurbitaceae. Phytochemistry 4:933–934CrossRefGoogle Scholar
  13. Dwivedi SL, Gurtu S, Chandra S, Yuejin W, Nigam SN (2001) Assessment of genetic diversity among selected groundnut germplasm. I. RAPD analysis. Plant Breed 120:345–349CrossRefGoogle Scholar
  14. Emre I (2009) Electrophoretic analysis of some Lathyrus L. species based on seed storage proteins. Genet Resour Crop Evol 56:31–38CrossRefGoogle Scholar
  15. Fernandez A, Krapovickas A (1994) Cromosomas y evolucion en Arachis (Leguminosae). Bonplandia 8:187–220Google Scholar
  16. Friend SA, Quandt D, Tallury SP, Stalker HT, Hilu KW (2010) Species, genomes and section relationships in genus Arachis (Fabaceae): a molecular phylogeny. Plant Syst Evol 290:185–199CrossRefGoogle Scholar
  17. Frimpong RO, Sriswathi M, Ntare BR, Dakora FD (2015) Assessing the genetic diversity of 48 groundnut (Arachis hypogaea L.) genotypes in the Guinea savanna agro-ecology of Ghana, using microsatellite-based markers. Afr J Biotechnol 14:2484–2493CrossRefGoogle Scholar
  18. Gray JR, Fairbrothers DE, Quirm JA (1973) Biochemical and anatomical population variation in the Danthonia sericea complex. Bot Gazzettes 134:166–173CrossRefGoogle Scholar
  19. Gregory WC, Gregory MP (1976) Groundnut, Arachis hypogaea (Leguminosae-Papilionadae). In: Simmonds NW (ed) Evolution of crop plants. Longman Group Ltd., Harlow, pp 151–154Google Scholar
  20. Gregory MP, Gregory WC (1979) Exotic germplasm of Arachis L. interspecific hybrids. J Hered 70:185–193CrossRefGoogle Scholar
  21. Gregory WC, Gregory MP, Krapovickas A, Smith BW, Yarbrough JA (1973) Structure and genetic resources of peanuts. In: Wilson CT (ed) Peanuts—culture and uses. The American Peanut Research and Education Association, Stillwater, OK, pp 47–133Google Scholar
  22. Gregory WC, Krapovickas A, Gregory MP (1980) Structure, variation, evolution and classification in Arachis. In: Summerfield RJ, Bunting AH (eds) Advances in Legume science. Royal Botanic Gardens, Kew, pp 469–481Google Scholar
  23. Grieshammer U, and Wynne JC (1990) Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Sci 18:72–75CrossRefGoogle Scholar
  24. Halward TM, Stalker HT, Larue EA, Kochert G (1991) Genetic variation detectable with molecular markets among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020CrossRefGoogle Scholar
  25. Halward TM, Stalker HT, Larue EA, Kochert G (1992) Use of single primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L). Plant Mol Biol 18:315–325CrossRefPubMedGoogle Scholar
  26. He GH, Prakash CS (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol 48:347–352CrossRefGoogle Scholar
  27. He GH, Meng RH, Gao H, Guo BZ, Gao GQ, Newman M, Pittman RN, Prakash CS (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142:131–136CrossRefGoogle Scholar
  28. He G, Barkley NA, Zhao Y, Yuan M, Prakash CS (2014) Phylogenetic relationships of species of genus Arachis based on genic sequences. Genome 57:327–334CrossRefPubMedGoogle Scholar
  29. Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327CrossRefGoogle Scholar
  30. Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): evidence from RAPDs. Plant Syst Evol 198:167–178CrossRefGoogle Scholar
  31. Javaid A, Ghafoor A, Anwar R (2004) Seed storage protein electrophoresis in groundnut for evaluating genetic diversity. Pak J Bot 36(1):25–29Google Scholar
  32. Jian G, Li-Feng L, Shun-Li C, Huan-Ying C, Xin-Yan W (2012) Studies on genetic diversity of peanut (Arachis hypogaea L.) varieties bred in Hebei, Shandong and Henan provinces. J Plant Genet Res 13:201–206Google Scholar
  33. Khera P, Upadhyaya HD, Pandey MK, Roorkiwal M, Sriswathi M, Janila P, Guo YM, Mackain MR, Nagy ED, Knapp SJ, Mack JL, Conner JA, Akins PO, Varshney RK (2013) Single nucleotide polymorphism-based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. Plant Genome.  https://doi.org/10.3835/plantgenome2013.06.0019 Google Scholar
  34. Klozova E, Turkova V, Smartt J, Pitterora K, Svachulova J (1983a) Immunochemical characterization of seed proteins of some species of the genus Arachis L. Biol Planta 25:201–208CrossRefGoogle Scholar
  35. Klozova E, Svachulova J, Smartt J, Hadac E, Turkova V, and Hadacova V (1983b) The comparison of seed protein patterns within the genus Arachis by polyacrylamide Gel Electrophoresis. Biolo Planta 25:266–273CrossRefGoogle Scholar
  36. Kochert G, Halward TM, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570CrossRefPubMedGoogle Scholar
  37. Kochert G, Stalker HM, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origins and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291CrossRefGoogle Scholar
  38. Koppolu R, Upadhyaya HD, Dwivedi SL, Hoisington DA, Varshney RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol 10:15–27CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kottapalli KR, Payton P, Rakwal R, Agrawal GA, Shibato J, Burow M et al (2008) Proteomics analysis of mature seeds of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional and allergenic proteins. Plant Sci 175:321–329CrossRefGoogle Scholar
  40. Krapovickas A, Gregory WC (1994) Taxonomical del genera Arachis (Leguminosae). Bonplandia 8:1–184Google Scholar
  41. Krapovickas A, Rigonii VA (1957) Neuvasespecies de Arachis vinculades al problema del origin del mani. Dorwiniana 11:431–455Google Scholar
  42. Krapovickas A, Fernanadez A, Seeligman MP (1974) Recuperaction de la fertilidad en un hibgido interspecifico de Arachis (Leguminosae). Bonplandia 3:129–142Google Scholar
  43. Krishna TG, Mitra R (1987) Arachin polymorphism in groundnut (A. hypogaea L.). Phytochemistry 26:897–902CrossRefGoogle Scholar
  44. Krishna TG, Mitra R (1988) The probable genome donors to Arachis hypogaea L. based on arachin seed storage protein. Euphytica 37:47–52CrossRefGoogle Scholar
  45. Krishna TG, Pawar SE, Mitra R (1986) Variation and inheritance of the arachin polypeptides of groundnut (A. hypogaea L.). Theor Appl Genet 73:82–87CrossRefPubMedGoogle Scholar
  46. Ladizinsky G, Hymowitz T (1979) Seed protein electrophoresis in taxonomic and evolutionary studies. Theor Appl Genet 54:145–151CrossRefPubMedGoogle Scholar
  47. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  48. Lanham PG, Forster BP, McNicol P, Moss JP, Powell W (1994) Seed storage protein variation in Arachis species. Genome 37:487–496CrossRefPubMedGoogle Scholar
  49. Liang XQ, Luo M, Holbrook CC, Guo BZ (2006) Storage protein profiles in Spanish and runner market type peanuts and potential markers. BMC Plant Biol 6:24CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lu J, Pickersgill B (1993) Isozyme variation and species relationships in peanut and its wild relatives (Arachis L.; Leguminosae). Theor Appl Genet 85:550–560CrossRefPubMedGoogle Scholar
  51. Malik FA, Qureshi AS, Ashraf M, Khan MR, Javed A (2009) Evaluation of genetic diversity in soybean (Glycine max) lines using seed protein electrophoresis. Aust J Crop Sci 3:107–112Google Scholar
  52. Mallikarjuna N, Tandra SK, Jadhav DR (2006) Arachis hoehnei the probable B genome donor of Arachis hypogaea based on crossability, cytogenetical and molecular studies. J SAT Agric Res 2:1–2Google Scholar
  53. Masoomeh J, Mehran G, Fatemeh J (2015) Seed storage protein electrophoresis for identification of some groundnut (Arachis hypogaea L.). Int Res J Appl Basic Sci 9:1718–1721Google Scholar
  54. Masoumi SM, Kahrizi D, Rostami-Ahmadvandi H, Soorni J, Kiani S, Mostafaie A, Yari K (2012) Genetic diversity study of some medicinal plant accessions belong to Apiaceae family based on seed storage proteins patterns. Mol Biol Rep 39:10361–10365CrossRefPubMedGoogle Scholar
  55. Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11CrossRefPubMedGoogle Scholar
  56. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11CrossRefPubMedCentralGoogle Scholar
  57. Moretzsohn M, Ediene G, Gouvea EG, Inglis PW, Leal-Bertioli SC, Valls JF, Bertioli DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111:113–126CrossRefPubMedGoogle Scholar
  58. Paik-Ro OG, Smith RL, Knaft DT (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208CrossRefPubMedGoogle Scholar
  59. Panda RC, Kumar OA, Rao KGR (1986) The use of seed protein electrophoresis in the study of phylogenetic relationships in chilli pepper (Capsicum L.). Theor Appl Genet 72:665–670CrossRefPubMedGoogle Scholar
  60. Panigrahi J, Kumar DR, Mishra M, Mishra RP, Jena P (2007) Genomic relationships among 11 species in the genus Cajanus as revealed by seed protein (albumin and globulin) polymorphisms. Plant Biotechnol Rep 1:109–116CrossRefGoogle Scholar
  61. Peñaloza A, Valls JFM (2005) Chromosome number and satellite chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 14:65–72Google Scholar
  62. Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/darwin. Accessed 11 Jan 2017
  63. Przybylska J, Blixt S, Hurich J, Zimniak-Przybylska Z (1977) Comparative study of seed proteins in the genus Pisum. I. Electrophoretic patterns of different protein fractions. Genet Pol 18:27–38Google Scholar
  64. Raina SN, Mukai Y (1998) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262CrossRefGoogle Scholar
  65. Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59CrossRefGoogle Scholar
  66. Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:576–586CrossRefGoogle Scholar
  67. Rao PS, Bharathi M, Reddy KB (2013) Identification of peanut (Arachis hypogaea L.) varieties through chemical tests and electrophoresis of soluble seed proteins. Legume Res 36:475–483Google Scholar
  68. Robledo G, Seijo G (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046CrossRefPubMedGoogle Scholar
  69. Rohlf EJ (1993) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 1.80. Applied Biostatistics Inc., SetauketGoogle Scholar
  70. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  71. Sathaiah V, Reddy TP (1985) Seed protein profiles of castor (Ricinus communis L.) and some Jatropha species. Genet Agraria 39:35–43Google Scholar
  72. Savoy CF (1976) Peanut (Arachis hypagaea L.) seed protein characterization and genotype sample classification using polyacrylamide gel electrophoresis. Biochem Biophys Res Com 68:886–893CrossRefPubMedGoogle Scholar
  73. Schroeder HE (1982) Quantitative studies on the cotyledonary proteins in the genus Pisum. J Sci Food Agric 33:623–633CrossRefPubMedGoogle Scholar
  74. Seetharam A, Nayar KMD, Sreekantaradhya R, Achar DKT (1973) Cytological studies in the interspecific hybrid of Arachis hypogaea × A. duranensis. Cytologia 38:277–280CrossRefGoogle Scholar
  75. Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaënsis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303CrossRefPubMedGoogle Scholar
  76. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea—Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971CrossRefPubMedGoogle Scholar
  77. Singh AK (1986) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 8. Synthetic amphidiploids and their importance in interspecific breeding. Theor Appl Genet 72:433–439CrossRefPubMedGoogle Scholar
  78. Singh AK (1988) Putative genome donors of A. hypogaea L. Evidence from crosses with synthetic amphidiploids. Plant Syst Evol 160:143–153CrossRefGoogle Scholar
  79. Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2: chromosome complements of species in section Arachis. Theor Appl Genet 61:305–314PubMedGoogle Scholar
  80. Singh AK, Moss JP (1984) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 5. Genome analysis in section Arachis and its implications in gene transfer. Theor Appl Genet 68:355–364CrossRefPubMedGoogle Scholar
  81. Singh AK, Nigam SN (2016) Arachis gene pools and genetic improvement in groundnut. In: Rajpal VR et al (eds) Gene pool diversity and crop improvement, sustainable development and biodiversity. Springer, Cham, pp 17–75CrossRefGoogle Scholar
  82. Singh AK, Sivaramakrishnan S, Mengesha MH, Ramaih CD (1991) Phylogenetic relations in section Arachis based on seed protein profile. Theor Appl Genet 82:593–597PubMedGoogle Scholar
  83. Singh AK, Gurtu S, Jambunathan R (1994) Phylogenetic relationships in the genus Arachis based on seed protein profiles. Euphytica 74:219–225CrossRefGoogle Scholar
  84. Singh KP, Raina SN, Singh AK (1996) Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39:890–897CrossRefPubMedGoogle Scholar
  85. Singh KP, Singh A, Raina SN, Singh AK, Ogihara Y (2002) Ribosomal DNA repeat unit polymorphism and heritability in peanut (Arachis hypogaea L.) accessions and related wild species. Euphytica 123:211–220CrossRefGoogle Scholar
  86. Smartt J, Gregory WC (1967) Interspecific cross-compatibility between the cultivated peanut (A. hypogaea) and other members of the genus Arachis. Oleaginenx 22:455–459Google Scholar
  87. Smartt J, Stalker HT (1982) Speciation and cytogenetics in Arachis. In: Pattee HE, Young CT (eds) Peanut science and technology. American Peanut Research and Education Society, Yokum, pp 21–49Google Scholar
  88. Smartt J, Gregory WC, Gregory MP (1978a) b The genomes of Arachis hypogaea. 2. The implications of interspecific breeding. Euphytica 27:677–680CrossRefGoogle Scholar
  89. Smartt J, Gregory WC, Gregory MP (1978b) a The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675CrossRefGoogle Scholar
  90. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. H. Freeman and Company, San FranciscoGoogle Scholar
  91. Song B, Oehrle NW, Liu S, Krishnan HB (2016) Characterization of seed storage proteins of several perennial glycine species. J Agric Food Chem 64:8499–8508CrossRefPubMedGoogle Scholar
  92. Stalker HT (1991) A new species section Arachis of peanuts with D genome. Am J Bot 78:630–637CrossRefGoogle Scholar
  93. Stalker HT, Moss JP (1987) Speciation, cytogenetics and utilization of Arachis species. Adv Agron 41:1–37CrossRefGoogle Scholar
  94. Stalker HT, Jones TM, Murphy JP (1990) Isozyme variability among Arachis species. Am Peanut Res Educ Soc 22:50Google Scholar
  95. Stalker HT, Phillips TD, Murphy JP, Jones TM (1994) Variation in isozyme patterns among Arachis species. Theor Appl Genet 87:746–755CrossRefPubMedGoogle Scholar
  96. Subramanian V, Gurtu S, Nageswara Rao RC, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660CrossRefPubMedGoogle Scholar
  97. Tripathy SK, Mohanty P, Jena M, Dash GB, Pradhan K, Nayak PK, Dash S, Lenka D, Mishra D, Mohapatra PM, Swain D, Senapati N (2016) Revealing contrasting genetic variation and study of genetic diversity in urdbean (Vigna mungo (L.) Hepper using SDS-PAGE of seed storage proteins. Res Biotechnol 7:11–20Google Scholar
  98. Valls JFM, Simpson CE (2005) New species of Arachis L. (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–63Google Scholar
  99. Varsai Muhammad S (1973) Cytogenetical investigations in the genus Arachis L. II. Triploid hybrids and their derivatives. Madras Agric J 60:1414–1427Google Scholar
  100. Wang H, Khera P, Huang B, Yuan M, Katam R, Zhuang W, Shultz KH, Moore KM, Culbreath AK, Zhang X, Varshney RK, Xie L, Guo B (2015) Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers. J Integr Plant Biol.  https://doi.org/10.1111/jipb.12380 Google Scholar
  101. Xiong F, Liu J, Jiang J, Zhong R, He L, Han Z, Li Z, Tang X, Tang R (2013) Molecular profiling of genetic variability in domesticated groundnut (Arachishypogaea L.) based on ISJ, URP, and DAMD markers. Biochem Genet 51:889–900CrossRefPubMedGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Apekshita Singh
    • 1
  • Soom Nath Raina
    • 1
  • Vijay Rani Rajpal
    • 2
  • Anurudh K. Singh
    • 3
  1. 1.Amity Institute of BiotechnologyAmity University Uttar PradeshNoidaIndia
  2. 2.Department of Botany, Hans Raj CollegeUniversity of DelhiDelhiIndia
  3. 3.GurgaonIndia

Personalised recommendations