Physiology and Molecular Biology of Plants

, Volume 19, Issue 4, pp 461–477 | Cite as

Plant proteomics in India and Nepal: current status and challenges ahead

  • Renu Deswal
  • Ravi Gupta
  • Vivek Dogra
  • Raksha Singh
  • Jasmeet Kaur Abat
  • Abhijit Sarkar
  • Yogesh Mishra
  • Vandana Rai
  • Yelam Sreenivasulu
  • Ramesh Sundar Amalraj
  • Manish Raorane
  • Ram Prasad Chaudhary
  • Ajay Kohli
  • Ashok Prabhakar Giri
  • Niranjan Chakraborty
  • Sajad Majeed Zargar
  • Vishwanath Prasad Agrawal
  • Ganesh Kumar Agrawal
  • Dominique Job
  • Jenny Renaut
  • Randeep Rakwal
Review article

Abstract

Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.

Keywords

Proteomics Plants Agriculture Food security Abiotic stress Biotic stress 

Notes

Acknowledgments

Authors would like to thank Mr. Raj Agrawal (Database & Webpage Administrator, INPPO) for constantly updating our members on the INPPC information through the INPPO website (www.inppo.com). We would also like to thank the team of INPPO supporting staff for their help and support during the development of INPPC. We would like to express our thanks to Dominique Job for presenting INPPO initiatives at the French-Indian proteomics workshop (2013) in Bangalore. RD thanks Department of Biotechnology and R & D grant from University of Delhi for partial financial support for the work mentioned in the review.

Supplementary material

12298_2013_198_MOESM1_ESM.doc (36 kb)
Supplementary Table 1(DOC 36 kb)
12298_2013_198_MOESM2_ESM.doc (62 kb)
Supplementary Table 2(DOC 62 kb)

References

  1. Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: Change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380PubMedCrossRefGoogle Scholar
  2. Abat JK, Deswal R (2012) Nitric oxide modulates the expression of proteins and promotes epiphyllous bud differentiation in Kalanchoe pinnata. J Plant Growth Regul 32:92–101CrossRefGoogle Scholar
  3. Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872PubMedCrossRefGoogle Scholar
  4. Agrawal GK Rakwal R (2008) Plant proteomics: technologies, strategies, and applications. In: Agrawal GK, Rakwal R (eds.), John Wiley & Sons, Inc., HobokenGoogle Scholar
  5. Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059PubMedCrossRefGoogle Scholar
  6. Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959PubMedCrossRefGoogle Scholar
  7. Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008a) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518PubMedCrossRefGoogle Scholar
  8. Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N (2008b) Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 7:3803–3817PubMedCrossRefGoogle Scholar
  9. Agrawal P, Kumar S, Das HR (2010) Mass spectrometric characterization of isoform variants of peanut (Arachis hypogaea) stem lectin (SL-I). J Proteome Res 73:1573–1586CrossRefGoogle Scholar
  10. Agrawal GK, Job D, Zivy M, Agrawal VP, Bradshaw RA, Dunn MJ, Haynes PA, van Wijk KJ, Kikuchi S, Renaut J, Weckwerth W, Rakwal R (2011a) Time to articulate a vision for the future of plant proteomics - a global perspective: an initiative for establishing the International Plant Proteomics Organization (INPPO). Proteomics 11:1559–1568PubMedCrossRefGoogle Scholar
  11. Agrawal P, Kumar S, Jaiswal YK, Das HR, Das RH (2011b) A Mesorhizobium lipopolysaccharide (LPS) specific lectin (CRL) from the roots of nodulating host plant, Cicer arietinum. Biochimie 93:440–449PubMedCrossRefGoogle Scholar
  12. Agrawal GK, Pedreschi R, Barkla BJ, Bindschedler LV, Cramer R, Sarkar A, Renaut J, Job D, Rakwal R (2012a) Translational plant proteomics: a perspective. J Proteomics 75:4588–4601PubMedCrossRefGoogle Scholar
  13. Agrawal GK, Sarkar A, Agrawal R, Ndimba BK, Tanou G, Dunn MJ, Kieselbach T, Cramer R, Wienkoop S, Chen S, Rafudeen MS, Deswal R, Barkla BJ, Weckwerth W, Heazlewood JL, Renaut J, Job D, Chakraborty N, Rakwal R (2012b) Boosting the globalization of plant proteomics through INPPO: current developments and future prospects. Proteomics 12:359–368PubMedCrossRefGoogle Scholar
  14. Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R (2013) A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. Mass Spectrom Rev. doi:10.1002/mas.21365 PubMedGoogle Scholar
  15. Amalraj RS, Selvaraj N, Veluswamy GK, Ramanujan RP, Muthurajan R, Palaniyandi M, Agrawal GK, Rakwal R, Viswanathan R (2010) Sugarcane proteomics: establishment of a protein extraction method for 2-DE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis 31:1959–1974PubMedCrossRefGoogle Scholar
  16. Bhattacharayya D, Sinha R, Ghanta S, Chakraborty A, Hazra S, Chattopadhyay S (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:34. doi:10.1186/1477-5956-10-34 CrossRefGoogle Scholar
  17. Bhushan D, Pandey A, Chattopadhyay A, Choudhary MK, Chakraborty S, Datta A, Chakraborty N (2006) Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. J Proteome Res 5:1711–1720PubMedCrossRefGoogle Scholar
  18. Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in Chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884PubMedCrossRefGoogle Scholar
  19. Bhushan D, Jaiswal DK, Ray D, Basu D, Datta A, Chakraborty S, Chakraborty N (2011) Dehydration-responsive reversible and irreversible changes in the extracellular matrix: comparative proteomics of chickpea genotypes with contrasting tolerance. J Proteome Res 10:2027–2046PubMedCrossRefGoogle Scholar
  20. Biswas S, Agrawal P, Saroha A, Das HR (2009) Purification and mass spectrometric characterization of Sesbania aculeata (Dhaincha) stem lectin. Protein J 28:391–399PubMedCrossRefGoogle Scholar
  21. Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298PubMedCrossRefGoogle Scholar
  22. Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K, Shekhar S, Naik PS, Pande PC, Chakrborti SK, Datta A (2010) Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci USA 107:17533–17538PubMedCrossRefGoogle Scholar
  23. Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307PubMedCrossRefGoogle Scholar
  24. Cho K, Agrawal GK, Shibato J, Jung YH, Kim YK, Nahm BH, Jwa NS, Tamogami S, Han O, Kohda K, Iwahashi H, Rakwal R (2007) Survey of differentially expressed proteins and genes in jasmonic acid treated rice seedling shoot and root at the proteomics and transcriptomics levels. J Proteome Res 6:3581–3603PubMedCrossRefGoogle Scholar
  25. Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008) Integrated transcriptomics, proteomics, and metabolomics analyzes to survey ozone responses in the leaves of rice seedling. J Proteome Res 7:2980–2998PubMedCrossRefGoogle Scholar
  26. Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598PubMedCrossRefGoogle Scholar
  27. Chourey K, Ramani S, Apte SK (2003) Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress. J Plant Physiol 160:1165–1174PubMedCrossRefGoogle Scholar
  28. Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18PubMedCrossRefGoogle Scholar
  29. Demartini DR, Jain R, Agrawal G, Thelen JJ (2011) Proteomic comparison of plastids from developing embryos and leaves of Brassica napus. J Proteome Res 10:2226–2237PubMedCrossRefGoogle Scholar
  30. Dogra V, Ahuja PS, Sreenivasulu Y (2013) Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle. J Proteomics 78:26–38PubMedCrossRefGoogle Scholar
  31. Ehrhardt DW, Frommer WB (2012) New technologies for 21st century plant science. Plant Cell 00:1–21Google Scholar
  32. FAO (2009) How to feed the world in 2050, high-level expert forum. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  33. FAO (2010) The State of Food Insecurity in the World: addressing food insecurity in protracted crises. ISBN 978-92-5-106610-2, 2010, Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  34. Frohlich A, Gaupels F, Sarioglu H, Holzmeister C, Spannagl M, Durner J, Lindermayr C (2012) Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol 159:902–914PubMedCrossRefGoogle Scholar
  35. Gill T, Dogra V, Kumar S, Ahuja PS, Sreenivasulu Y (2012) Protein dynamics during seed germination under copper stress in Arabidopsis over-expressing Potentilla superoxide dismutase. J Plant Res 125:165–172PubMedCrossRefGoogle Scholar
  36. Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696PubMedCrossRefGoogle Scholar
  37. Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress related proteins. Electrophoresis 22:2824–2831PubMedCrossRefGoogle Scholar
  38. Hakeem KR, Chandna R, Ahmad A, Qureshi MI, Iqbal M (2012a) Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Appl Biochem Biotechnol 168:834–850PubMedCrossRefGoogle Scholar
  39. Hakeem KR, Chandna R, Ahmad P, Iqbal M, Ozturk M (2012b) Relevance of proteomic investigations in plant abiotic stress physiology. OMICS 16:621–635PubMedCrossRefGoogle Scholar
  40. Heazlewood JL (2011) The green proteome: challenges in plant proteomics. Front Plant Sci 2:6PubMedCrossRefGoogle Scholar
  41. Jain S, Srivastava S, Sarin NB, Kav NN (2006) Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol Biochem 44:253–259PubMedCrossRefGoogle Scholar
  42. Jaiswal DK, Ray D, Subba P, Mishra P, Gayali S, Datta A, Chakraborty S, Chakraborty N (2012) Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.). Proteome Sci 10:59PubMedCrossRefGoogle Scholar
  43. Jung YH, Rakwal R, Agrawal GK, Shibato J, Kim JA, Lee MO, Choi PK, Jung SH, Kim SH, Koh HJ, Yonekura M, Iwahashi H, Jwa NS (2006) Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). J Proteome Res 5:2586–2598PubMedCrossRefGoogle Scholar
  44. Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS, Agrawal GK, Rakwal R, Jwa NS (2008) Systematic secretome analyzes of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. J Proteome Res 7:5187–5210PubMedCrossRefGoogle Scholar
  45. Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598PubMedCrossRefGoogle Scholar
  46. Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim S, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539PubMedCrossRefGoogle Scholar
  47. Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R, Agrawal GK, Lee SY, Kang KY (2009) Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302–1313PubMedCrossRefGoogle Scholar
  48. Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY (2013a) In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 78:58–71PubMedCrossRefGoogle Scholar
  49. Kim YJ, Lee HM, Wang Y, Wu J, Kim SG, Kang KY, Park KH, Kim YC, Choi IS, Agrawal GK, Rakwal R, Kim ST (2013b) Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics. doi:10.1002/pmic.201200555 Google Scholar
  50. Kumar S, Verma AK, Sharma A, Kumar D, Tripathi A, Chaudhari BP, Das M, Jain SK, Dwivedi PD (2013) Phytohemagglutinins augment red kidney bean (Phaseolus vulgaris L.) induced allergic manifestations. J Proteomics. doi:10.1016/j.jprot.2013.02.003 Google Scholar
  51. Kundu S, Chakraborty D, Pal A (2011) Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. J Proteomics 74:337–349PubMedCrossRefGoogle Scholar
  52. Kundu S, Chakraborty D, Kundu A, Pal A (2013) Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Sci 11:15PubMedCrossRefGoogle Scholar
  53. Lambert JP, Ethier M, Smith JC, Figeys D (2005) Proteomics: from gel based to gel free. Anal Chem 77:3771–3788PubMedCrossRefGoogle Scholar
  54. Mandal SM, Mandal M, Pati BR, Das AK, Ghosh AK (2009) Proteomics view of a Rhizobium isolate response to arsenite [As(III)] stress. Acta Microbiol Immunol Hung 56:157–167PubMedCrossRefGoogle Scholar
  55. McDonald H, Friedman D (2010) Leverging technologies: DIGE and MudPIT. J Biomol Tech 21:S10Google Scholar
  56. Mishra M, Tamhane VA, Khandelwal N, Kulkarni MJ, Gupta VS, Giri AP (2010) Interaction of recombinant CanPIs with Helicoverpa armigera gut proteases reveals their processing patterns, stability and efficiency. Proteomics 10:2845–2857PubMedCrossRefGoogle Scholar
  57. Narula K, Datta A, Chakraborty N, Chakraborty S (2013) Comparative analyses of nuclear proteome: extending its function. Frontiers Plant Sci. doi:10.3389/fpls.2013.00100 Google Scholar
  58. Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakraborty N (2006) The nuclear proteome of Chickpea (Cicer arietinum L.) reveals predicted and unexpected proteins. J Proteome Res 5:3301–3311PubMedCrossRefGoogle Scholar
  59. Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from Chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107PubMedGoogle Scholar
  60. Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N (2010) Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 9:3443–3464PubMedCrossRefGoogle Scholar
  61. Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics 75:921–937PubMedCrossRefGoogle Scholar
  62. Pathak M, Singh B, Sharma A, Agrawal P, Pasha SB, Das HR, Das RH (2006) Molecular cloning, expression, and cytokinin (6-benzylaminopurine) antagonist activity of peanut (Arachis hypogaea) lectin SL-I. Plant Mol Biol 62:529–545PubMedCrossRefGoogle Scholar
  63. Raghav SK, Gupta B, Shrivastava A, Das HR (2007) Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1β through suppression of NF-κB activation by 3-(1′-1′-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L. Eur J Pharmacol 560:69–80PubMedCrossRefGoogle Scholar
  64. Rakwal R, Agrawal GK, Yonekura M (1999) Separation of proteins from stressed rice (Oryzae sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20:3472–3478PubMedCrossRefGoogle Scholar
  65. Rana B, Sreenivasulu Y (2013) Protein changes during ethanol induced seed germination in Aconitum heterophyllum. Plant Sci 198:27–38PubMedCrossRefGoogle Scholar
  66. Ray S, Patra B, Das-Chatterjee A, Ganguli A, Majumder AL (2010) Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene(s) in Oryza sativa: comparison with the wild halophytic rice, Porteresia coarctata. Planta 231:1211–1227PubMedCrossRefGoogle Scholar
  67. Renuse S, Harsha HC, Kumar P, Acharya PK, Sharma J, Goel R, Kumar GS, Raju R, Prasad TS, Slotta T, Pandey A (2012) Proteomic analysis of an unsequenced plant–Mangifera indica. J Proteomics 75:5793–5796PubMedCrossRefGoogle Scholar
  68. Righetti PG, Boschetti E, Lomas L, Citterio A (2006) Protein equalizer technology: the quest for a “democratic proteome”. Proteomics 6:3980–3992PubMedCrossRefGoogle Scholar
  69. Righetti PG, Boschetti E, Fasoli E (2011) Capturing and amplifying impurities from recombinant therapeutic proteins via combinatorial peptide libraries: a proteomic approach. Curr Pharm Biotechnol 12:1537–1547PubMedCrossRefGoogle Scholar
  70. Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteome Res 9:4565–4584PubMedCrossRefGoogle Scholar
  71. Sehrawat A, Gupta R, Deswal R (2013) Nitric oxide-cold stress signalling crosstalk-evolution of a novel regulatory mechanism. Proteomics. doi:10.1002/pmic.201200445 PubMedGoogle Scholar
  72. Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929PubMedCrossRefGoogle Scholar
  73. Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127PubMedCrossRefGoogle Scholar
  74. Sinha R, Chattopadhyay S (2011) Changes in the leaf proteome profile of Mentha arvensis in response to Alternaria alternata infection. J Proteomics 74:327–336PubMedCrossRefGoogle Scholar
  75. Sinha R, Bhattacharyya D, Majumdar AB, Datta R, Hazra S, Chattopadhyay S (2013) Leaf proteome profiling of transgenic mint infected with Alternaria alternata. J Proteomics. doi:10.1016/j.jprot.2013.01.020 Google Scholar
  76. Swatek KN, Graham K, Agrawal GK, Thelen JJ (2011) The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed. J Proteome Res 10:4076–4087PubMedCrossRefGoogle Scholar
  77. Thelen JJ, Peck S (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19:3339–3346PubMedCrossRefGoogle Scholar
  78. Thiellement H, Zivy M, Damerval C, Mechin V (2007) Plant proteomics: methods and protocols. Thiellement H (ed.), vol. 355, Humana Press.Google Scholar
  79. Torres NL, Cho K, Shibato J, Hirano M, Kubo A, Masuo Y, Iwahashi H, Jwa NS, Agrawal GK, Rakwal R (2007) Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 28:4369–4381PubMedCrossRefGoogle Scholar
  80. Upadhyay SK, Mishra M, Singh H, Ranjan A, Chandrashekar K, Verma PC, Singh PK, Tuli R (2010) Interaction of Allium sativum leaf agglutinin with midgut brush border membrane vesicles proteins and its stability in Helicoverpa armigera. Proteomics 10:4431–4440PubMedCrossRefGoogle Scholar
  81. Van Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508PubMedCrossRefGoogle Scholar
  82. Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy PCO, Surabhi G-K, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641CrossRefGoogle Scholar
  83. Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefGoogle Scholar
  84. Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50CrossRefGoogle Scholar
  85. Yadavalli V, Nellaepalli S, Subramanyam R (2011) Proteomic analysis of thylakoid membranes. Methods Mol Biol 684:159–170PubMedCrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2013

Authors and Affiliations

  • Renu Deswal
    • 1
  • Ravi Gupta
    • 1
  • Vivek Dogra
    • 2
  • Raksha Singh
    • 3
  • Jasmeet Kaur Abat
    • 4
  • Abhijit Sarkar
    • 5
    • 6
  • Yogesh Mishra
    • 7
  • Vandana Rai
    • 8
  • Yelam Sreenivasulu
    • 2
  • Ramesh Sundar Amalraj
    • 9
  • Manish Raorane
    • 10
  • Ram Prasad Chaudhary
    • 11
  • Ajay Kohli
    • 10
  • Ashok Prabhakar Giri
    • 12
  • Niranjan Chakraborty
    • 13
  • Sajad Majeed Zargar
    • 14
  • Vishwanath Prasad Agrawal
    • 6
  • Ganesh Kumar Agrawal
    • 6
  • Dominique Job
    • 15
  • Jenny Renaut
    • 16
  • Randeep Rakwal
    • 6
    • 17
    • 18
  1. 1.Molecular Plant Physiology and Proteomics Laboratory, Department of BotanyUniversity of DelhiDelhiIndia
  2. 2.Biotechnology DivisionCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  3. 3.Department of Plant Molecular Biology, College of Life ScienceSejong UniversitySeoulRepublic of Korea
  4. 4.Department of Botany, Gargi CollegeUniversity of DelhiNew DelhiIndia
  5. 5.Department of BotanyBanaras Hindu UniversityVaranasiIndia
  6. 6.Research Laboratory for Biotechnology and Biochemistry (RLABB)KathmanduNepal
  7. 7.Department of Plant Physiology, Umeå Plant Science CenterUmeå UniversityUmeåSweden
  8. 8.National Research Centre on Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia
  9. 9.Plant Pathology Section, Sugarcane Breeding InstituteIndian Council of Agricultural ResearchTamil NaduIndia
  10. 10.Plant Molecular Biology Laboratory, Plant Breeding, Genetics and BiotechnologyInternational Rice Research InstituteManilaPhilippines
  11. 11.Central Department of Botany, and Research Centre for Applied Science and TechnologyTribhuvan UniversityKirtipurNepal
  12. 12.Plant Molecular Biology Unit, Division of Biochemical SciencesNational Chemical LaboratoryPuneIndia
  13. 13.National Institute of Plant Genome ResearchNew DelhiIndia
  14. 14.School of BiotechnologySK University of Agricultural Sciences and TechnologyJammuIndia
  15. 15.CNRS/Bayer Crop Science (UMR 5240) Joint LaboratoryLyonFrance
  16. 16.Department of Environment and AgrobiotechnologiesCentre de Recherche Public-Gabriel LippmannBelvauxLuxembourg
  17. 17.Organization for Educational InitiativesUniversity of TsukubaTsukubaJapan
  18. 18.Department of Anatomy IShowa University School of MedicineShinagawaJapan

Personalised recommendations