Physiology and Molecular Biology of Plants

, Volume 15, Issue 1, pp 93–98

A reliable protocol for transformation of Catharanthus roseus through Agrobacterium tumefaciens

  • Toolika Srivastava
  • Sandip Das
  • Sudhir Kumar Sopory
  • P. S. Srivastava
Research Article
  • 130 Downloads

Abstract

Proliferation of axillary shoot buds and multiple shoot formation in Catharanthus roseus was obtained in 96 % explants on MS medium (3 % sucrose) containing NAA + BA. 2,4-D induced callusing in both, the nodal as well as in leaf segments. Leaf-derived callus was used for transformation with Agrobacterium tumefaciens LBA4404/pBI-S1. Bacterial cell concentration, duration of co-cultivation and acetosyringone concentration influenced transformation efficiency. Under optimal co-cultivation conditions, 98 % of the explants showed GUS expression. PCR based amplification of the transformed and subsequently selected callus tissue indicated the presence of uidA, Gly I and nptII genes.

Key words

Catharanthus roseus Micropropagation RAPD Co-cultivation GUS GlyI Agrobacterium tumefaciens Transformation 

Abbreviations

AA

1-naphthaleneacetic acid

BA

N6-benzyladenine

CH

Casein hydrolysate

IAA

Indole-3-acetic acid

Kn

Kinetin

2,4-D

2,4-dichlorophenoxyacetic acid

RAPD

Random amplification of polymorphic DNA

PCR

Polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batra J, Dutta A, Singh D, Kumar S and Sen J (2004). Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Pl. Cell Rep. 23: 148–154.CrossRefGoogle Scholar
  2. Bhadra R, Vani S and Shanks JV (1993). Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotech. Bioengin. 41: 581–592.CrossRefGoogle Scholar
  3. Canel C, Lopes-cardoso MI, Whitmer S, Van der fits L, Pasquali G, Van der heijden R, Hoge JHC and Verpoorte R (1998). Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205: 414–419.PubMedCrossRefGoogle Scholar
  4. Cervera M, Pina JA, Juárez J, Navarro L and Peòa L (1998). Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Pl. Cell Rep. 18: 271–278.CrossRefGoogle Scholar
  5. Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW and Liu JR (2004). Plant regeneration from hairy root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Pl. Cell Rep. 22: 828–831.CrossRefGoogle Scholar
  6. Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  7. Edwards K, Johnstone C and Thompson C (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349.PubMedCrossRefGoogle Scholar
  8. Eilert U, De luca V, Kurz WGW and Constabel F (1987). Alkaloid formation by habituated and tumorous cell suspension cultures of Catharanthus roseus. Pl. Cell Rep. 6: 271–274.CrossRefGoogle Scholar
  9. Jefferson RA, Kavanagh TA and Bevan MW (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Jour. 13: 3901–3907.Google Scholar
  10. Jung KH, Kwak SS, Kim SW, Lee H, Choi CY and Liu JR (1992). Improvement of catharanthine productivity in hairy root cultures of Catharanthus roseus by using monosaccharides as carbon source. Biotech. Lett. 14: 695–700.CrossRefGoogle Scholar
  11. Kim SW, Jung KH, Kwak SS and Liu JR (1994). Relationship between cell morphology and indole alkaloid production in suspension cultures of Catharanthus roseus. Pl. Cell Rep. 14: 23–26.CrossRefGoogle Scholar
  12. Li XQ, Liu CN, Ritchie SW, Peng J, Gelvin SB and Hodges TK (1992). Factors influencing Agrobacterium-mediated transient expression of gus A in rice. Pl. Mol. Bio. 20: 1037–1048.CrossRefGoogle Scholar
  13. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plantarum 15: 473–497.CrossRefGoogle Scholar
  14. Nammi S, Boini MK, Lodagala SD and Behara RBS (2003). The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complementary and Alternative Medicine, vol. 3, p. 4.PubMedCrossRefGoogle Scholar
  15. Ross IA (1999). Catharanthus roseus G. Don. In: Medicinal plants of the world. Totowa, New Jersey, Hum. Press 9: 109–118.Google Scholar
  16. Rout GR, Das P, Goel S and Raina SN (1998). Determination of genetic stability of micropropagated plants of ginger using random amplified polymorphic DNA (RAPD) markers. Botanical Bull. Aca. Sin. 39: 23–27.Google Scholar
  17. Salvi ND, George L and Eapen S (2002). Micropropagation and field evaluation of micropropagated plants of turmeric. Pl. Cell Tis. Org. Cult. 68: 143–151.CrossRefGoogle Scholar
  18. Singh D, Mehta SS, Neoliya NK, Shukla YN and Mishra M (2003). New possible insect growth regulators from Catharanthus roseus. Curr. Sci. 84: 1184–1186.Google Scholar
  19. Veena, Reddy VS and Sopory SK (1999). Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Pl. Jour. 17: 385–395.CrossRefGoogle Scholar
  20. Zarate R, Memelink J, Van der heijden R and Verpoorte R (1999). Genetic transformation via particle bombardment of Catharanthus roseus plants through adventitious organogenesis of buds. Biotech. Lett. 21: 997–1002.CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2009

Authors and Affiliations

  • Toolika Srivastava
    • 1
  • Sandip Das
    • 1
  • Sudhir Kumar Sopory
    • 2
  • P. S. Srivastava
    • 1
  1. 1.Department of BiotechnologyJamia HamdardNew DelhiIndia
  2. 2.Plant Molecular BiologyICGEBNew DelhiIndia

Personalised recommendations