Skip to main content
Log in

ATP synthesis catalyzed by a V-ATPase: an alternative pathway for energy conservation operating in plant vacuoles?

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The electrochemical H+ gradient generated in tonoplast vesicles isolated from maize seeds was found to be able to drive the reversal of the catalytic cycle of both vacuolar H+-pumps (Façanha and de Meis, 1998). Here we describe the reversibility of the vacuolar V-type H+-ATPase (V-ATPase) even in the absence of the H+ gradient in a water-Me2SO co-solvent mixture, resulting in net synthesis of [γ-32P]ATP from [32P]Pi and ADP. The water-Me2SO (5 to 20 %) media promoted inhibition of both PPi hydrolysis and synthesis reactions whereas it slightly affected the ATP hydrolysis and clearly stimulated the ATP synthesis, which was unaffected by uncoupling agents (FCCP, Triton X-100 or NH4 +). This effect of Me2SO on the ATP⇔32P exchange reaction seems to be related to a decrease of the apparent K m of the V-ATPase for Pi. The results are in accordance to the concept that the energetics of ATP synthesis catalysis depends on the solvation energies interacting in the enzyme microenvironment. A possible physiological significance of this phenomenon for the metabolism of desiccation-tolerant plant cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACMA:

9-amino-6-chloro-2-methoxyacridine

FCCP:

carbonyl cyanide p(trifluoromethoxy)-phenylhydrazone

Me2SO:

dimethyl sulfoxide

V-ATPase:

V-type H+-ATPase

H+-PPase:

membrane-bound H+ pyrophosphatase

References

  • Behrens, M.I. and de Meis, L. (1985). Synthesis of pyrophosphate by chromatophores of Rhodospirillum rubrum in the light and by soluble yeast inorganic pyrophosphatase in water-organic solvent mixtures. Eur. J. Biochem., 152: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Bewley, J.D. and Black, M. (1985). Seeds-Physiology of development and germination. Plenum Press, New York, pp. 139–152.

    Google Scholar 

  • Bowman, E.J., Siebers, A. and Altendorf, K. (1988). Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Nat. Acad. Sci., (USA) 85: 7972–7976.

    Article  CAS  Google Scholar 

  • Boyer, P.D. (1997). The ATP-synthase, a splendid molecular machine. Annu. Rev. Biochem., 66: 717–749.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P.D., de Meis, L., da Gloria Costa Carvalho, M. and Hackney, D.D. (1977). Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalyzed by sarcoplasmic reticulum adenosine triphosphatase. Biochemistry, 16: 136–40.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, W.A., Engelman, D.M., Von Heijne, G. and Rees, D.C. (1992). Forces involved in the assembly and stabilization of membrane proteins. FASEB J., 6: 3397–3402.

    PubMed  CAS  Google Scholar 

  • Cross, R.L., Cunningham, D. and Tamura, J.K. (1984). Binding change mechanism for ATP synthesis by oxidative phosphorylation and photophosphorylation. Curr Top Cell Regul., 24: 335–44.

    PubMed  CAS  Google Scholar 

  • de Meis, L. (1981). The Sarcoplasmic Reticulum. Transport and energy transduction. In the Wiley Series on Transport in the Life Sciences, Series Editor: E Edward Bittar, John Wiley, Vol 2. New York.

    Google Scholar 

  • de Meis, L. (1984). Pyrophosphate of high and low energy: Contributions of pH, Ca2+, Mg2+ and water to free energy of hydrolysis. J. Biol. Chem. 259: 6090–6097.

    PubMed  Google Scholar 

  • de Meis, L. (1988). Approaches to the study of mechanisms of ATP synthesis in sarcoplasmic reticulum. Meth. Enzymol., 157: 190–206.

    Article  PubMed  Google Scholar 

  • de Meis, L. (1989). Role of water in the energy of hydrolysis of phosphate compounds-energy transduction in biological membranes. Biochim. Biophys. Acta, 973: 333–349.

    Article  PubMed  Google Scholar 

  • de Meis, L. (1993). The concept of energy-rich phosphate compounds: Water, transport ATPases and entropic energy. Arch. Biochem. Biophys., 973: 333–349.

    Google Scholar 

  • de Meis, L. and Carvalho, M.G.C. (1974). Role of the Ca2+ concentration gradient in the adenosine 5′triphosphate. Inorganic phosphate exchange catalyzed by sarcoplasmic reticulum. Biochem., 13: 5032–5038.

    Article  Google Scholar 

  • de Meis, L. and Vianna, A.L. (1979). Energy interconversion by the Ca2+-transport ATPase of sarcoplasmic reticulum. Ann. Rev. Biochem., 48: 275–292.

    Article  PubMed  Google Scholar 

  • de Meis, L., Behrens, M.I., Celis, H., Romero, I., Puyou, M.T.G. and Puyou, A.G. (1986). Orthophosphate-pyrophosphate exchange catalyzed by soluble and membrane-bound inorganic pyrophosphatase. Eur. J. Biochem., 158: 149–157.

    Article  PubMed  Google Scholar 

  • de Meis, L., Behrens, M.I., Petretski, J.H. and Politi, M.J. (1985). Contribution of water to free energy of hydrolysis of pyrophosphate. Biochemistry, 24: 7783–7789.

    Article  PubMed  Google Scholar 

  • Duff, S.M., Moorhead, G.B., Lefebvre, D.D. and Plaxton, W.C. (1989). Phosphate starvation inducible bypasses of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol., 90: 1275–1278.

    Article  PubMed  CAS  Google Scholar 

  • Dupaix, A., Johannin, G. and Arrio, B. (1989) ATP synthesis and pyrophosphate-driven proton transport in tonoplast-enriched vesicles isolated from Catharanthus roseus. FEBS Lett., 249: 13–16.

    Article  CAS  Google Scholar 

  • Façanha, A.R. and de Meis, L. (1998). Reversibility of H+-ATPase and H+-Pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol., 116: 1487–1495.

    Article  Google Scholar 

  • Fiske, C.F. and Subbarow, Y. (1925). The colorimetric determination of phosphorus. J. Biol. Chem., 66: 375–400.

    CAS  Google Scholar 

  • George, P., Witonsky, R.J., Trachtman, M., Wu, C., Dorwart, W., Richman, L., Richman, W., Shurayh, F. and Lentz, B. (1970). “Squiggle-H2O” An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions. Biochim. Biophys. Acta, 223: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Grazinoli-Garrido, R. and Sola-Penna, M. (2004). Inactivation of yeast inorganic pyrophosphatase by organic solvents. An. Acad. Bras. Cienc. 76: 699–705.

    PubMed  CAS  Google Scholar 

  • Gupta, M.N. and Roy, I. (2004). Enzymes in organic media: Forms, functions and applications. Eur. J. Biochem., 271: 2575–2583.

    Article  PubMed  CAS  Google Scholar 

  • Haltia, T. and Freire E. (1995). Forces and factors that contribute to the structural stability of membrane-proteins. Biochim. Biophys. Acta-Bioenergetics, 1228: 1–27.

    Article  Google Scholar 

  • Haltia, T. and Freire, E. (1995). Forces and factors that contribute to the structural stability of membrane proteins. Biochim. Biophys. Acta, 1228: 1–27.

    Article  PubMed  Google Scholar 

  • Hayes, D.M., Kenyon, G.L. and Kollman P.A. (1978). Theoretical calculations of the hydrolysis energy of some “high-energy” molecules. 2. A survey of some biologically important hydrolytic reactions. J. Am. Chem. Soc., 106: 4331–4340.

    Article  Google Scholar 

  • Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G.H., Okajima, T., Wada, Y. and Futai, M. (2003). Subunit rotation of vacuolar-type proton pumping ATPase-Relative rotation of the G and c subunits. J. Biol. Chem., 278: 23714–23719.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, T., Nakamura, N., Omote, H., Wada, Y. and Futai, M. (2000). Regulation and reversibility of vacuolar H+-ATPase. J. Biol. Chem., 275: 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, T., Nakamura, N., Omote, H., Wade, Y. and Futai, M. (2000). Regulation and reversibility of vacuolar H+-ATPase. J. Biol. Chem., 275: 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, V.N. and Khavkin, E.E. (1976). Protein patterns of developing mitochondria at the onset of germination in maize (Zea mays L.). FEBS Lett., 65: 383–385.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S-Y., Sivaguru, M. and Stacey, G. (2006). Extracellular ATP in plants. visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol., 142: 984–992.

    Article  PubMed  CAS  Google Scholar 

  • Klibanov, A.M. (2001). Improving enzymes by using them in organic solvents. Nature, 409: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Labahn, A. and Graber, P. (1992). Transport protons do not participate in ATP synthesis/hydrolysis at the nucleotide binding site of the H+-ATPase from chloroplasts. FEBS Lett., 313: 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Larondelle, Y., Corbineau, F., Dethier, M., Come, D. and Hers, H.G. (1987). Fructose 2,6-bisphosphate in germinating oat seeds. A biochemical study of seed dormancy. Eur. J. Biochem., 166: 605–610.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M-Y. and Dordick, J.S. (2002). Enzyme activation for nonaqueous media. Curr. Opin. Biotechnol., 13: 376–384.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Maeshima, M., Hara-Nishimura, I., Takeuchi, Y. and Nishimura, M. (1994). Accumulation of vacuolar H+-pyrophosphatase and H+-ATPase during reformation of the central vacuole in germinating pumpkin seeds. Plant Physiol., 106: 61–69.

    PubMed  CAS  Google Scholar 

  • Otero, A.S. and de Meis, L. (1982). Phosphorylation of Ca2+ ATPase by inorganic phosphate in water-organic solvent media: Dielectric constant and solvent hydrophobicity contribution. Z Naturforschung, 37: 527–531.

    Google Scholar 

  • Rea, P.A. and Sanders, D. (1987). Tonoplast energization: Two H+ pumps, one membrane. Physiol Plant., 71: 131–141.

    Article  CAS  Google Scholar 

  • Sakamoto, J. and Tonomura, Y. (1983). Synthesis of enzyme-bound ATP by mitochondrial soluble F1-ATPase in the presence of dimethyl sulfoxide. J. Biochem. (Tokyo) 93: 1601–1614.

    CAS  Google Scholar 

  • Schmidt, A.L. and Briskin, D.P. (1993a). Energy transduction in tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue: H+/substrate stoichiometries for the H+-ATPase and H+-PPase. Arch. Biochem. Biophys., 301: 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, A.L. and Briskin, D.P. (1993b). Reversal of the red beet tonoplast H+-ATPase by a pyrophosphate-generated proton electrochemical gradient. Arch. Biochem. Biophys., 306: 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M. (1998). Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Botanica Acta, 111: 167–175.

    CAS  Google Scholar 

  • Suzuki, K. and Kasamo, K. (1993) Effects of aging on the ATP-and pyrophosphate-dependent pumping of protons across the tonoplast isolated from pumpkin cotyledons. Plant Cell Physiol., 34: 613–619.

    CAS  Google Scholar 

  • Swanson, S.J. and Jones, R.L. (1996). Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell, 8: 2211–2221.

    Article  PubMed  CAS  Google Scholar 

  • Sze, H. (1985). H+-translocating ATPases: Advances using membrane vesicles. Annu. Rev. Plant Physiol., 36: 175–208.

    Article  CAS  Google Scholar 

  • Taiz, L. (1992). The plant vacuole. J. Exp. Biol., 172: 113–122.

    PubMed  CAS  Google Scholar 

  • Tribuzy, V.B.A., Fontes, C.F.L., Nørby, J.G. and Barrabin, H. (2002). Dimethyl sulfoxide-induced conformational state of Na+/K+-ATPase studied by proteolytic cleavage. Arch. Biochem. Biophys., 399: 89–95.

    Article  CAS  Google Scholar 

  • Tuena de Gomez-Puyou, M., de Jesus Garcia, J. and Gomez-Puyou, A. (1993). Synthesis of pyrophosphate and ATP by soluble mitochondrial F1. Biochemistry, 32: 2213–2218.

    Article  PubMed  CAS  Google Scholar 

  • Vicré, M., Farrant, J.M. and Driouich, A. (2004). Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species Plant Cell Environ., 27: 329–1340.

    Article  Google Scholar 

  • Weber, J. and Senior A.E. (1997). Catalytic mechanism of F1-ATPase. Biochim. Biophys. Acta, 1319: 19–58.

    Article  PubMed  CAS  Google Scholar 

  • White, P.J. (1994). Bafilomycin A1 is a non-competitive inhibitor of the tonoplast H+-ATPase of maize coleoptiles. J. Exp. Botany, 45: 1397–1402.

    Article  CAS  Google Scholar 

  • Yang, S.J., Ko, S.J., Tsai, Y.R., Jiang, S.S., Kuo, S.Y., Hung, S.H. and Pan, R.L. (1998). Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure. Biochem J., 331: 395–402.

    PubMed  CAS  Google Scholar 

  • Yokoyama, K., Muneyuki, E., Amano, T., Mizutani, S., Yoshida, M., Ishida, M. and Ohkuma, S. (1998). V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J. Biol. Chem., 273: 20504–20510.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M. (1983). The synthesis of enzyme-bound ATP by the F1-ATPase from the thermophilic bacterium PS3 in 50 % dimethylsulfoxide. Biochem Biophys Res Commun., 114: 907–912.

    Article  PubMed  CAS  Google Scholar 

  • Zancani, M., Skiera, L.A. and Sanders, D. (2007). Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana. Biochim. Biophys. Acta, 1768: 311–316.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Rocha Façanha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Façanha, A.R., Okorokova-Façanha, A.L. ATP synthesis catalyzed by a V-ATPase: an alternative pathway for energy conservation operating in plant vacuoles?. Physiol Mol Biol Plants 14, 195–203 (2008). https://doi.org/10.1007/s12298-008-0019-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0019-x

Key words

Navigation