Genetic engineering for heat tolerance in plants

  • Amanjot Singh
  • Anil Grover
Review Article


High temperature tolerance has been genetically engineered in plants mainly by over-expressing the heat shock protein genes or indirectly by altering levels of heat shock transcription factor proteins. Apart from heat shock proteins, thermotolerance has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. It is suggested that Hsps may be directly implicated in thermotolerance as agents that minimize damage to cell proteins. The other three above approaches leading to thermotolerance in transgenic experiments though operate in their own specific ways but indirectly might be aiding in creation of more reductive and energy-rich cellular environment, thereby minimizing the accumulation of damaged proteins. Intervention in protein metabolism such that accumulation of damaged proteins is minimized thus appears to be the main target for genetically-engineering crops against high temperature stress.

Key words

Heat shock proteins Heat shock factors Protein metabolism Thermotolerance Transgenic plants 


  1. Agarwal M, Katiyar-Agarwal, S. and Grover, A. (2002). Plant Hsp100 proteins: structure, function and regulation. Plant Sci., 163: 397–405.CrossRefGoogle Scholar
  2. Agarwal, M., Katiyar-Agarwal, S., Sahi, C., Gallie, D.R. and Grover, A. (2001). Arabidopsis thaliana Hsp100 protein: kith and kin. Cell Stress Chap., 6: 219–224.CrossRefGoogle Scholar
  3. Agarwal, M., Sarkar, N. and Grover, A. (2003). Low molecular weight heat shock proteins in plants. J. Plant Biol., 30: 141–149.Google Scholar
  4. Alia, Hayashi, H., Sakamoto, A. and Murata, N. (1998). Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J, 16: 155–161.PubMedCrossRefGoogle Scholar
  5. Alscher, R.G., Erturk, N., and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341.PubMedCrossRefGoogle Scholar
  6. Barnett, T.M., Altohuler, C., McDaniel, N. and Mascarenhas, J.P. (1980). Heat shock induced proteins in plant cells. Dev. Genet., 1: 331–340.CrossRefGoogle Scholar
  7. Batra, G., Chauhan, V.S., Singh, A., Sarkar, N.K. and Grover, A. (2007). Complexity of rice Hsp100 gene family: lessons from rice genome sequence data. J. Biosci., 32: 611–619.PubMedCrossRefGoogle Scholar
  8. Buchner, J. (1999). Hsp90 & Co.: a holding for folding. Trends Biochem. Sci. 1999, 24: 136.PubMedCrossRefGoogle Scholar
  9. Burke, J.J. and Chen, J. (2006). Changes in cellular and molecular processes in plant adaptation to heat stress. In: Plant-Environment Interactions (Ed. Huang, B.), CRC press, pp. 27–46.Google Scholar
  10. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol., 143, 251–262.PubMedCrossRefGoogle Scholar
  11. Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C., and Ko, S.S. (2006). Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol., 140: 1297–1305.PubMedCrossRefGoogle Scholar
  12. Chen, J., Burke, J.J., Xin, Z, Xu, C. and Velten, J. (2006). Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant Cell Environ., 29: 1437–1448.PubMedCrossRefGoogle Scholar
  13. Chen, S., Vaghchhipawala, Z., Li, W., Asard, H. and Dickman, M. B. (2004). Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants. Plant Physiol., 135: 1630–1641.PubMedCrossRefGoogle Scholar
  14. Doyle, S.M., Hoskins, J.R., and Wickner, S. (2007). Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci U S A 104, 11138–11144.PubMedCrossRefGoogle Scholar
  15. Dragovic, Z., Broadley, S.A., Shomura, Y., Bracher, A., and Hartl, F.U. (2006). Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25: 2519–2528.PubMedCrossRefGoogle Scholar
  16. Feng, L., Wang, K., Li, Y., Tan, Y., Kong, J., Li, H. and Zhu, Y. (2007). Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep. DOI 10.1007/s00299-006-0299-yGoogle Scholar
  17. Georgopoulos, C. and Welch, P.A. (1993). Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol., 9: 601–634.PubMedCrossRefGoogle Scholar
  18. Gepstein, S., Grover, A. and Blumwald, E. (2005). Producing biopharmaceuticals in the desert: building an abiotic stress tolerance in plants for salt, heat and drought. In: Modern Biopharmaceuticals. (Eds Knablein, J. and Muller, R.H.), Wiley-VCH Verlag GmbH & Co., Weinhaum, pp. 967–994.CrossRefGoogle Scholar
  19. Glover, J.R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94: 73–82.PubMedCrossRefGoogle Scholar
  20. Grover, A. (2002). Molecular biology of stress responses. Cell Stress Chap., 7: 1–5.CrossRefGoogle Scholar
  21. Grover, A., Agarwal, M., Katiyar-Agarwal, S., Sahi, C. and Agarwal, S. (2000). Production of high temperature tolerant transgenic plants through manipulation of photosynthetic membrane lipids. Curr. Sci., 79: 557–559.Google Scholar
  22. Grover, A., Aggarwal, P.K., Kapoor, A., Katiyar-Agarwal, S., Agarwal, M., Chandramouli, A. (2003). Addressing abiotic stresses in agriculture through transgenic technology. Curr Sci., 84: 355–367.Google Scholar
  23. Grover, A., Kapoor, A., Katiyar-Agarwal, S., Agarwal, M., Sahi, C., Jain, P., Satyalakshmi, O., Agarwal, S. and Dubey, H. (2001a). Experimentation in biology of plant abiotic stress responses. Proc Indian Natl Acad Sci., B67: 189–214.Google Scholar
  24. Grover, A., Kapoor, A., Satyalakshmi, O., Agarwal, S., Sahi, C., Katiyar-Agarwal, S., Agarwal, M. and Dubey, H. (2001b). Understanding molecular alphabets of the plant abiotic stress responses. Curr. Sci., 80: 206–216.Google Scholar
  25. Grover, A., Pareek, A., Singla, S.L., Minhas, D., Katiyar, S., Ghawana, S., Dubey, H., Agarwal, M., Rao, G.U., Rathee, J. and Grover, A. (1998). Engineering crops for tolerance against abiotic stresses through gene manipulation. Curr. Sci., 75: 689–696.Google Scholar
  26. Grover, A., Sahi, C., Sanan, N. and Grover, A. (1999). Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci., 143: 101–111.CrossRefGoogle Scholar
  27. Hartl, F.U., Hlodan, R. and Langer, T. (1994). Molecular chaperones in protein folding: The art of avoiding sticky situations Trends Biochem. Sci., 19: 20–25.PubMedCrossRefGoogle Scholar
  28. Hong, S.W. and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci, U S A 97: 4392–4397.PubMedCrossRefGoogle Scholar
  29. Hong, S.W. and Vierling, E. (2001). Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J, 27: 25–35.PubMedCrossRefGoogle Scholar
  30. Ignatova, Z. and Gierasch, L.M. (2006). Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci, U S A., 103: 13357–13361.PubMedCrossRefGoogle Scholar
  31. Katiyar-Agarwal, S., Agarwal, M. and Grover, A. (2003). Heat tolerant basmati rice engineered by overexpression of hsp101 gene. Plant Mol. Biol., 51: 677–686.PubMedCrossRefGoogle Scholar
  32. Katiyar-Agarwal, S., Agarwal, M., Gallie, D. and Grover, A. (2001). Search for the cellular functions of plant Hsp100/Clp family proteins. Crit. Rev. lant Sci., 20: 277–295.CrossRefGoogle Scholar
  33. Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., and Scharf, K.D. (2007). Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10, 310–316.PubMedCrossRefGoogle Scholar
  34. Krishna, P. and Gloor, G. (2001). The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chap., 6: 238–246.CrossRefGoogle Scholar
  35. Kumar, M.S., Kumar, G., Srikanthbabu, V. and Udayakumar, M. (2007). Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. J Plant Physiol., 164: 111–125.PubMedCrossRefGoogle Scholar
  36. Lee, J.H. and Schoffl, F. (1996). An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet, 252: 11–19.PubMedCrossRefGoogle Scholar
  37. Lee, J.H., Hubel, A., and Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8(4): 603–612.PubMedCrossRefGoogle Scholar
  38. Lee, U., Wie, C., Escobar, M., Williams, B., Hong, S.W., and Vierling, E. (2005). Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell, 17: 559–571.PubMedCrossRefGoogle Scholar
  39. Li, C., Chen, Q., Gao, X., Chen, N., Xu, S., Chen, J. and Wang, X. (2005). AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci. China C Life Sci., 48(6):540–550.PubMedCrossRefGoogle Scholar
  40. Low, D., Brandle, K., Nover, L. and Forreiter, C. (2000). Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta, 211: 575–582.PubMedCrossRefGoogle Scholar
  41. Malik, M.K., J. P. Slovin, Hwang, C.H. and Zimmerman, J.L. (1999). Modified expression of a carrot small heat shock protein gene, hsp17.7, results in increased or decreased thermotolerance. Plant J, 20: 89–99.PubMedCrossRefGoogle Scholar
  42. Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L. and Scharf, K.D. (2002). In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev., 16: 1555–1567.PubMedCrossRefGoogle Scholar
  43. Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M. and Sato, Y. (2004). Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed., 13: 165–175.CrossRefGoogle Scholar
  44. Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H. and Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science, 287: 476–479.PubMedCrossRefGoogle Scholar
  45. Murata, N. (1983). Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol., 24:81–86.Google Scholar
  46. Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. and Nishida, I. (1992). Genetically engineered alteration in the chilling sensitivity of plants. Nature, 356: 710–713.CrossRefGoogle Scholar
  47. Neta-Sharir, I., Isaacson, T., Lurie, S. and Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell, 17: 1829–1838.PubMedCrossRefGoogle Scholar
  48. Nieto-Sotelo, J., Martinez, L.M., Ponce, G., Cassab, G.I., Alagon, A., Meeley, R.B., Ribaut, J.M., and Yang, R. (2002). Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell, 14: 1621–1633.PubMedCrossRefGoogle Scholar
  49. Ou, W., Park, Y-D., Zhou, H-M. (2001) Molecular mechanism for osmolyte protection of creatine kinase against guanidine denaturation. Euro J Biochem, 268: 5901–5911.CrossRefGoogle Scholar
  50. Panchuk, I.I., Volkov, R.A. and Schoffl, F. (2002). Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol., 129: 838–853.PubMedCrossRefGoogle Scholar
  51. Papageorgiou, G.C. and Murata, N. (1995). The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res., 44: 243–252.CrossRefGoogle Scholar
  52. Park, S.M. and Hong, C.B. (2002). Class I small heat shock protein gives thermotolerance in tobacco. J. Plant Physiol., 159: 25–30.CrossRefGoogle Scholar
  53. Pike, C.S., Grieve, J., Badger, M.R. and Price, G.D. (2001). Thermoprotective properties of small heat shock proteins from rice, tomato and Synechocystis sp. PCC6803 overexpressed in, and isolated from, Escherichia coli. Aust. J. Plant Physiol., 28:1219–1229.Google Scholar
  54. Prandl, R., Hinderhofer, K., Eggers-Schumacher, G., and Schoffl, F. (1998). HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Genet., 258: 269–278.PubMedCrossRefGoogle Scholar
  55. Queitsch, C., Hong, S.W., Vierling, E. and Lindquist, S. (2000). Hsp101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12: 479–492.PubMedCrossRefGoogle Scholar
  56. Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P., and Bukau, B. (2006). Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J, 25: 2510–2518.PubMedCrossRefGoogle Scholar
  57. Ritossa, F.M. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 18: 571–573.CrossRefGoogle Scholar
  58. Sage, R.F. and Kubien, D.S. (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ., 30: 1086–1106.PubMedCrossRefGoogle Scholar
  59. Sakuma, Y., Maruyama, K., Quin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K., (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl Acad Sci USA, 103: 18822–18827.PubMedCrossRefGoogle Scholar
  60. Salvucci, M.E., DeRidder, B.P. and Portis, A.R.Jr. (2006). Effect of activase level and isoform on the thermotolerance of photosynthesis in Arabidopsis. J. Expt. Bot., 57: 3793–3799.CrossRefGoogle Scholar
  61. Sanchez, Y. and Lindquist, S. (1990). HSP104 required for induced thermotolerance. Science 248: 1112–1114.PubMedCrossRefGoogle Scholar
  62. Sanmiya, K., Suzuki, K., Egawa, Y. and Shono, M. (2004). Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants FEBS Lett., 557: 265–268.PubMedCrossRefGoogle Scholar
  63. Scharf, K.D., Siddique, M., and Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chap., 6: 225–237.CrossRefGoogle Scholar
  64. Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., and Koskull-Doring, P. (2007). A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. (In press).Google Scholar
  65. Shabtai, S., Salts, Y., Kaluzky, G. and Barg, R. (2007). Improved yielding and reduced puffiness under extreme temperatures induced by fruit-specific expression of rolB in processing tomatoes. Theor Appl Genet., 114: 1203–1209.PubMedCrossRefGoogle Scholar
  66. Shi, W.M., Muramoto, Y., Ueda, A. and Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273: 23–27.PubMedCrossRefGoogle Scholar
  67. Singla, S.L., Pareek, A. and Grover, A. (1997). High temperature stress. In: Physiological Ecology of Plants. (Ed M.N.V. Prasad), John Wiley and Sons, pp. 101–127.Google Scholar
  68. Sohn, S.O. and Back, K. (2007). Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol. Plant., 51(2): 340–342.CrossRefGoogle Scholar
  69. Suzuki, N., Rizhsky, L., Liang, H., Shuman, J., Shulaev, V. and Mittler, R. (2005). Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol., 139: 1313–1322.PubMedCrossRefGoogle Scholar
  70. Tang, L., Kwon, S.Y., Kim, S.H., Kim, J.S., Choi, J.S., Cho, K.Y., Sung, C.K., Kwak, S.S. and Lee, H.S. (2006). Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep., 25: 1380–1386.PubMedCrossRefGoogle Scholar
  71. Thomas, P.G., Dominy, P.J., Vigh, L., Mansourian, A.R., Quinn, P.J. and Williams, W.P. (1986) Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim Biophys Acta, 849: 131–140.CrossRefGoogle Scholar
  72. Tissieres, A., Mitchell, H. K. and Tracey, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol., 84: 389–398.PubMedCrossRefGoogle Scholar
  73. Tognetti, V.B., Palatnik, J.F., Fillat, M.F., Melzer, M., Hajirezaei, M.R., Valle, E.M. and Carrillo, N. (2006). Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell, 18: 2035–2050.PubMedCrossRefGoogle Scholar
  74. Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42: 579–620.CrossRefGoogle Scholar
  75. Vigh, L., Horvath, I., Maresca, B. and Harwood, J.L. (2007). Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem. Sci., 32: 357–363.PubMedCrossRefGoogle Scholar
  76. Vigh, L., Maresca, B. and Harwood, J.L. (1998). Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem. Sci., 23: 369–374.PubMedCrossRefGoogle Scholar
  77. Wahid, A., Gelani, S., Ashraf, M. and Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environ. Expt. Bot., 61: 199–223.CrossRefGoogle Scholar
  78. Wang, W., Vincour, B., Shoseyov, O. and Altman, A. (2004). Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 9: 244–252.PubMedCrossRefGoogle Scholar
  79. Wang, W., Vinocur, B. and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218:1–14.PubMedCrossRefGoogle Scholar
  80. Wu, C. (1995). Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol., 11:441–469.PubMedCrossRefGoogle Scholar
  81. Yang, J.Y., Sun, Y., Sun, A.Q., Yi, S.Y., Qin, J., Li, M.H., Liu, J. (2006). The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Mol. Biol., 62: 385–395.PubMedCrossRefGoogle Scholar
  82. Yang, X., Liang, Z. and Lu, C. (2005). Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol., 138: 2299–2309.PubMedCrossRefGoogle Scholar
  83. Yeh, C.H., Chang, P.L., Yeh, K.W., Lin, W.C., Chen, Y.M. and Lin, C.Y. (1997). Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. USA 94: 10967–10972.CrossRefGoogle Scholar
  84. Yeh, C.H., Chen, Y.M. and Lin, C. Y. (2002). Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol., 128: 661–668.PubMedCrossRefGoogle Scholar
  85. Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M. and Oda, K. (2007). Expression of rice heat stress transcription factor OshsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta (in press) DOI 10.1007/s00425-007-0670-4Google Scholar
  86. Young, L.S., Yeh, C. H., Chen, Y.M. and Lin, C. Y. (1999). Molecular characterization of Oryza sativa 16.9 kDa heat shock protein. Biochem. J., 344: 31–38.PubMedCrossRefGoogle Scholar
  87. Zhang, C. and Guy, C.L. (2005). Co-immunoprecipitation of Hsp101 with cytosolic Hsc70. Plant Physiol. Biochem., 43: 13–18.PubMedCrossRefGoogle Scholar
  88. Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S. and Ben-Hayyim, G. (2005). Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J, 44: 361–371.PubMedCrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2008

Authors and Affiliations

  1. 1.Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations