Raising salinity tolerant rice: recent progress and future perspectives

  • Anil K. Singh
  • Mohammad W. Ansari
  • Ashwani Pareek
  • Sneh L. Singla-Pareek
Review Article


With the rapid growth in population consuming rice as staple food and the deteriorating soil and water quality around the globe, there is an urgent need to understand the response of this important crop towards these environmental abuses. With the ultimate goal to raise rice plant with better suitability towards rapidly changing environmental inputs, intensive efforts are on worldwide employing physiological, biochemical and molecular tools to perform this task. In this regard, efforts of plant breeders need to be duly acknowledged as several salinity tolerant varieties have reached the farmers field. Parallel efforts from molecular biologists have yielded relevant knowledge related to perturbations in gene expression and proteins during stress. Employing transgenic technology, functional validation of various target genes involved in diverse processes such as signaling, transcription, ion homeostasis, antioxidant defense etc for enhanced salinity stress tolerance has been attempted in various model systems and some of them have been extended to crop plant rice too. However, the fact remains that these transgenic plants showing improved performance towards salinity stress are yet to move from ‘lab to the land’. Pondering this, we propose that future efforts should be channelized more towards multigene engineering that may enable the taming of this multigene controlled trait. Recent technological achievements such as the whole genome sequencing of rice is leading to a shift from single gene based studies to genome wide analysis that may prove to be a boon in re-defining salt stress responsive targets.

Key words

Rice Salt stress Salinity tolerance Transgenics Breeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, G.K., Iwahashi, H. and Rakwal, R. (2003). Rice MAPKs. Biochem. Biophys. Res. Commun. 302: 171–180.PubMedCrossRefGoogle Scholar
  2. Alia, Hayashi, H., Chen T.H.H. and Murata, N. (1998). Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21: 232–239.CrossRefGoogle Scholar
  3. Apse, M.P. and Blumwald, E. (2002). Engineering salt tolerance in plants. Curr. Opin. Biotechnol., 13: 146–150.PubMedCrossRefGoogle Scholar
  4. Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285: 1256–1258.PubMedCrossRefGoogle Scholar
  5. Asano, T., Tanaka, N., Yang, G., Hayashi, N. and Kamatsu, S. (2005). Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol., 46: 356–366.PubMedCrossRefGoogle Scholar
  6. Asch, F., Dingkuhn, M., Dörffling K. and Miezan, K. (2000). Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica, 113: 109–118.CrossRefGoogle Scholar
  7. Babu, R., Zhang, J., Blum, A., Ho, D., Wu, R. and Nguyen, H.T. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci., 166: 855–862.CrossRefGoogle Scholar
  8. Badawi, G.H., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K. and Tanaka, K. (2004). Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci., 166: 919–928.CrossRefGoogle Scholar
  9. Bajaj, S. and Mohanty, A. (2005). Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotech. J., 3: 275–307.CrossRefGoogle Scholar
  10. Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91: 179–194.PubMedCrossRefGoogle Scholar
  11. Bohra, J.S. and Dörffling, K. (1993). Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity. Plant Soil, 152: 299–303.CrossRefGoogle Scholar
  12. Boonburapong, B. and Buaboocha, T. (2007). Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol., 7: 4.PubMedCrossRefGoogle Scholar
  13. Boyer, J.S. (1982). Plant productivity and environment. Science, 218: 443–448.PubMedCrossRefGoogle Scholar
  14. Breusegem, F.V., Vranova, E., Dat, J.F. and Inze, D. (2001). The role of active oxygen species in plant signal transduction. Plant Sci., 161: 405–414.CrossRefGoogle Scholar
  15. Brouquisse, R. Weigel, P., Rhodes, D., Yocum, C.F. and Hanson, A.D. (1989). Evidence for a ferredoxin-dependent choline mono-oxygenase from spinach chloroplasts stroma. Plant Physiol., 90: 322–329.PubMedGoogle Scholar
  16. Cheng, Z., Jayprakash, T., Huang, X. and Wu, R. (2002). Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol. Breed., 16: 71–82.CrossRefGoogle Scholar
  17. Counce, P.A. and Wells, B.R. (1990). Rice plant population density effect on early-season nitrogen requirement. J. Prod. Agric., 3: 390–393.Google Scholar
  18. Cushman, J.C. and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol., 3: 117–124.PubMedCrossRefGoogle Scholar
  19. Das, A., Gosal, S.S., Sidhu, J.S. and Dhaliwal, H.S. (2000). Induction of mutations for heat tolerance in potato by using in vitro culture and radiation. Euphytica, 120: 205–209.CrossRefGoogle Scholar
  20. De Ronde, J.A., Cress, W.A., Kruger, G.H.J., Strasser, R.J. and van Staden, J. (2004). Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CS gene, during heat and drought stress. J. Plant Physiol., 161: 1211–1224.PubMedCrossRefGoogle Scholar
  21. De Ronde, J.A., Strasser, R.J. and van Staden, J. (2001). Interaction of osmotic and temperature stress on transgenic soybean. Afr. J. Bot., 67: 655–660.Google Scholar
  22. Delauney, A.J. and Verma, D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. Plant J., 4: 215–223.CrossRefGoogle Scholar
  23. Droillard, M.J., Thibivilliers, S., Cazale, A.C., Barbier-Brygoo, H. and Lauriere, C. (2000). Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: Two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett., 474: 217–222.PubMedCrossRefGoogle Scholar
  24. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J., 33: 751–763.PubMedCrossRefGoogle Scholar
  25. Fasano, J., Massa, G. and Gilroy, S. (2002). Ionic signaling in plant responses to gravity and touch. J. Plant Growth Reg., 21: 71–88.CrossRefGoogle Scholar
  26. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J., 39: 863–876.PubMedCrossRefGoogle Scholar
  27. Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H. and Tanaka, Y. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol., 45: 146–159.PubMedCrossRefGoogle Scholar
  28. Fukuda, A., Yazaki, Y., Ishikawa, T., Koike, S. and Tanaka, Y. (1998). Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol., 39: 196–201.Google Scholar
  29. Gao, J.P., Chao, D.Y. and Lin, H.X. (2007). Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J. Integr. Plant Biol., 49: 742–750.CrossRefGoogle Scholar
  30. Garg, A.K., Kim, J.K., Owens, T.G, Ranwala, A.P., Choi, Y.D., Kochian, L.V. and Wu, R. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA, 99: 15898–15903.PubMedCrossRefGoogle Scholar
  31. Glenn, E.P., Brown, J.J. and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci., 18: 227–256.CrossRefGoogle Scholar
  32. Goddijn, O.J.M. and van Dun, K. (1999). Trehalose metabolism in plants. Trends Plant Sci., 4: 315–319.PubMedCrossRefGoogle Scholar
  33. Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B. M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W. L., Chen, L., Cooper, B., Park, S., Wood, T. C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R. M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., and Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296: 92–100.PubMedCrossRefGoogle Scholar
  34. Gravois, K.A. and McNew, R.W. (1993). Genetic relationships and selection for rice yield and yield components. Crop Sci., 33: 249–252.Google Scholar
  35. Gupta, A.S., Heinen, J.I., Holaday, S., Burket, J.J. and Allen, R.D. (1993a). Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA, 90: 1629–1633.PubMedCrossRefGoogle Scholar
  36. Gupta, A.S., Robert, P., Webb, A., Holaday, S. and Allen, R.D. (1993b). Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol., 103: 1067–1073.PubMedGoogle Scholar
  37. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol., 130: 639–648.PubMedCrossRefGoogle Scholar
  38. Hamida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savoure, A. and Jaoua, S. (2005). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci., 169: 746–752.CrossRefGoogle Scholar
  39. Hasegawa, P.M., Bressan, R.A. and Pardo, J.M. (2000). The dawn of plant salt tolerance genetics. Trends Plant Sci., 5: 317–319.PubMedCrossRefGoogle Scholar
  40. Hayashi, H., Alia, M.L., Deshnium, P., Ida, M. and Murata, N. (1997). Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12: 133–142.PubMedCrossRefGoogle Scholar
  41. Heenan, D.P., Lewin, L.G. and McCaffery, D.W. (1988). Salinity tolerance in rice varieties at different growth stages. Aust. J. Exp. Agric., 28: 343–349.CrossRefGoogle Scholar
  42. Hirt, H. (1997). Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci., 2: 11–15.CrossRefGoogle Scholar
  43. Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Takabe, T. and Takabe, T. (2000). Enhanced tolerance to salt stress in transgenic rice that overexpress chloroplast glutamine synthetase. Plant Mol. Biol., 43: 103–111.PubMedCrossRefGoogle Scholar
  44. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q. and Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA, 103: 12987–12992.PubMedCrossRefGoogle Scholar
  45. Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A. and Selvaraj, G. (2000). Genetic engineering of glycine betaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol., 122: 747–756.PubMedCrossRefGoogle Scholar
  46. Ikuta, S., Mamura, S., Misaki, H. and Horiuti, Y. (1977). Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem., 82: 1741–1749.PubMedGoogle Scholar
  47. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol., 47: 141–153.PubMedCrossRefGoogle Scholar
  48. Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, N.M. and Kim, J.K. (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol., 131: 516–524.PubMedCrossRefGoogle Scholar
  49. Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S. and Hirt, H. (1996). Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Nat. Acad. Sci. USA, 93: 11274–11279.PubMedCrossRefGoogle Scholar
  50. Kathuria, H., Giri, J., Tyagi, H. and Tyagi, A.K. (2007). Advances in transgenic rice biotechnology. Crit. Rev. Plant Sci., 26: 65–103.CrossRefGoogle Scholar
  51. Katsuhara, M., Otsuka, T. and Ezaki, B. (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci., 169: 369–373.CrossRefGoogle Scholar
  52. Kavi Kishor, P.B., Hong, Z., Miao, G.H., Hu, C.A.A. and Verma, D.P.S. (1995). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108: 1387–1394.Google Scholar
  53. Khatun, S., Rizzo, C.A. and Flowers, T.J. (1995). Genotypic variation in the effect of salinity on fertility in rice. Plant Soil, 173: 239–250.CrossRefGoogle Scholar
  54. Kiegerl, S., Cardinale, F., Siligan, C., Gross, A., Baudouin, E., Liwosz, A., Eklof, S., Till, S., Bögre, L., Hirt, H. and Meskiene, I. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 12: 2247–2258.PubMedCrossRefGoogle Scholar
  55. Kornyeyev, D., Logan, B.A. Allen, R.A. and Holaday, A.S. (2003). Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci., 165: 1033–1041.CrossRefGoogle Scholar
  56. Kultz, D. (1998). Phylogenetic and functional classification of mitogen-and stress-activated protein kinases. J. Mol. Evol., 46: 571–588.PubMedCrossRefGoogle Scholar
  57. Kumar, S., Dhingra, A., Daniell, H. (2004). Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol., 136: 2843–2854.PubMedCrossRefGoogle Scholar
  58. Landfald, B. and Strom, A.R. (1986). Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bact., 165: 849–855.PubMedGoogle Scholar
  59. Lee, I.S., Kim, D.S., Lee, S.J., Song, H.S., Lim, Y.P. and Lee, Y.I. (2003). Selection and characterizations of radiation-induced salinity-tolerant lines in rice. Breed. Sci. 53: 313–318.CrossRefGoogle Scholar
  60. Lee, S.C., Huh, K.W., An, K., An, G., Kim, S.R. (2004). Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells, 18: 107–114.PubMedGoogle Scholar
  61. Lee, Y.P., Kim, S.H., Bang, J.W., Lee, H.S., Kwak, S.S. and Kwon, S.Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep., 26: 591–598.PubMedCrossRefGoogle Scholar
  62. Ligterink, W., Kroj, T., Nieden, U.Z., Hirt, H. and Scheel, D. (1997). Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science, 276: 2054–2057.PubMedCrossRefGoogle Scholar
  63. Lilius, G., Holmberg, N. and Bulow, L. (1996). Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. BioTech., 14: 177–180.CrossRefGoogle Scholar
  64. Liu, Q. and Xue, Q. (2007). Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol. Biochem., 45: 6–14.PubMedCrossRefGoogle Scholar
  65. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391–1406.PubMedCrossRefGoogle Scholar
  66. Lu, Z., Liu, D. and Liu, S. (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep., (In press).Google Scholar
  67. Ma, X., Qian, Q. and Zhu, D. (2005). Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol. Biol., 58: 483–495.PubMedCrossRefGoogle Scholar
  68. Malik, V. and Wu, R. (2005). Transcription factor AtMyb2 increased salt-stress tolerance in rice, (Oryza sativa L.). Rice Genet. Newslett., 22: 63.Google Scholar
  69. Malmberg, R.L. and McIndoo, J. (1984). Ultraviolet mutagenesis and genetic analysis of resistance to methylglyoxal-bis (guanylhydrazone) in tobacco. Mol. Gen. Genet., 196: 28–34.CrossRefGoogle Scholar
  70. Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I. Zhu, J.K., Pardo, J.M. and Quintero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiol., 143: 1001–1012.PubMedCrossRefGoogle Scholar
  71. Matsumura, T., Tabayashi, N., Kamagata, Y., Souma, C. and Saruyama, H. (2002). Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol. Plant., 116: 317–327.CrossRefGoogle Scholar
  72. McKersie, B.D., Bowley, S.R., Harjanto, E. and Leprince, O. (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 111: 1177–1181.PubMedGoogle Scholar
  73. McKersie, B.D., Bowley, S.R. and Jones, K.S. (1999). Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 119: 839–848.PubMedCrossRefGoogle Scholar
  74. McKersie, B.D., Chen, Y., deBeus, M., Bowley, S.R., Bowler, C., Inzé, D., D’Halluin, K., Botterman, J. (1993). Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol., 103: 1155–1163.PubMedCrossRefGoogle Scholar
  75. McKersie, B.D., Murnaghan, J., Jones, K.S. and Bowley, S.R. (2000). Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol., 122: 1427–1437.PubMedCrossRefGoogle Scholar
  76. Mendoza, I., Quintero, F.J., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. (1996). Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J. Biol. Chem., 271: 23061–23067.PubMedCrossRefGoogle Scholar
  77. Mengiste, T., Chen, X., Salmeron, J. and Dietrich, R. (2003). The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell, 15: 2551–2565.PubMedCrossRefGoogle Scholar
  78. Miah, M.A.A., Pathan, M.S. and Quayum, H.A. (1996). Production of salt tolerant rice breeding line via doubled haploid. Euphytica, 91: 285–288.CrossRefGoogle Scholar
  79. Moghaieb, R.E.A., Tanaka, N., Saneoka, H., Hussein, H.A., Yousef, S.S., Ewada, M.A., Aly, M.A.M. and Fujita, K. (2000). Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of osmotic potential under salt stress. Soil Sci. Plant Nutr., 46: 873–883.Google Scholar
  80. Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N. and Tyagi, A.K. (2002). Transgenics of an elite indica rice variety Pusa Basmati-1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 106: 51–57.PubMedGoogle Scholar
  81. Molinari, H.B.C., Marur, C.J., Daros, E., de Campos, M.K.F., de Carvalho, J.F.R.P., Filho, J.C.B., Pereira, L.F.P. and Vieira, L.G.E. (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress Physiol. Plant., 130: 218–229.CrossRefGoogle Scholar
  82. Molinari, H.B.C., Marura, C.J., Filhoa, J.C.B., Kobayashib, A.K., Pileggic, M., Júniora, R.P.L., Pereirad, L.F.P. and Vieiraa, L.G.E. (2004). Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci., 167: 1375–1381.CrossRefGoogle Scholar
  83. Mukhopadhyay, A., Vij, S. and Tyagi, A.K. (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA, 101: 6309–6314.PubMedCrossRefGoogle Scholar
  84. Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A. and Hirt, H. (1999). Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J., 20: 381–388.PubMedCrossRefGoogle Scholar
  85. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol., 167: 645–663.PubMedCrossRefGoogle Scholar
  86. Nagamiya, K., Motohashi, T., Nakao, K., Prodhan, S.H., Hattori, E., Hirose, S., Ozawa, K., Ohkawa, Y., Takabe, T., Takabe, T. and Komamine, A. (2007). Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE Plant Biotech. Rep., 1: 49–55.CrossRefGoogle Scholar
  87. Natarajan, S.K., Ganapathy, M., Krishnakumar, S., Dhanalakshmi, R. and Saliha, B.B. (2005). Grouping of rice genotypes for salinity tolerance based upon grain yield and Na: K ratio under coastal environment. Res. J Agric. Biol. Sci. 1: 162–165.Google Scholar
  88. Obata, T., Kitamoto, H.K., Nakamura, A., Fukuda, A. and Tanaka, Y. (2007). Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol., 144: 1978–1985.PubMedCrossRefGoogle Scholar
  89. Oh, S.J., Kwon, C.W., Choi, D.W., Song, S.I. and Kim, J.K. (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech. J., 5: 646–656.CrossRefGoogle Scholar
  90. Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H. and Kim, J.K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol., 183: 341–351.CrossRefGoogle Scholar
  91. Ohta, M., Hayashia, Y., Nakashimaa, A., Hamada, A., Tanaka, A., Nakamurab, T., Hayakawa, T. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett., 532: 279–282.PubMedCrossRefGoogle Scholar
  92. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K. and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res., 10: 239–247.PubMedCrossRefGoogle Scholar
  93. Pandey, U.K. and Srivastava, R.D.L. (1991). Leaf potassium as an index of salt tolerance in paddy. Nat. Acad. Sci. Lett., 14: 161–164.Google Scholar
  94. Pardo, J.M., Reddy, M.P., Yang, S., Maggio, A., Huh, G.H., Matsumoto, T., Coca, M.A., Paino-D’Urzo, M., Koiwa, H., Yun, D.J., Watad, A.A., Bressan, R.A. and Hasegawa, P.M. (1998). Stress signaling through Ca+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA, 95: 9681–9686.PubMedCrossRefGoogle Scholar
  95. Pareek, A., Singh, A., Kumar, M., Kushwaha, H.R., Lynn, A.M. and Singla-Pareek, S.L. (2006). Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol., 142: 380–397.PubMedCrossRefGoogle Scholar
  96. Pareek, A., Singla-Pareek, S.L., Sopory, S.K. and Grover A (2007). Analysis of salt stress related transcriptome fingerprints from diverse plant species. In: Genomics-Assisted Crop Improvement (Eds. Varshney R.K. and Tuberosa R.), Springer (in press).Google Scholar
  97. Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T.S., Alexieva, V. and Djilianov, D. (2004). Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem., 42: 57–63.PubMedCrossRefGoogle Scholar
  98. Prasad, K.V.S.K. and Pardha-Saradhi, P. (2004). Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycine betaine biosynthesis into the chloroplasts. Plant Sci., 166: 1197–1212.CrossRefGoogle Scholar
  99. Prashanth, S.R., Sadhasivam, V. and Parida, A. (2007). Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res., (In press).Google Scholar
  100. Quan, R. Shang, M., Zhang, H., Zhao, Y. and Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotech. J., 2: 477–486.CrossRefGoogle Scholar
  101. Rajarathinam, S., Koodalingam, K. and Raja, V.D.G. (1988). Effect of potassium and sodium in rice for tolerance of soil salinity. J. Pot. Res., 4: 174–178.Google Scholar
  102. Reddy, A.S. (2001). Calcium: silver bullet in signaling. Plant Sci., 160: 381–404.PubMedCrossRefGoogle Scholar
  103. Rhodes, D. and Hanson, A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 44: 357–384.CrossRefGoogle Scholar
  104. Riano-Pachon, D.M., Ruzicic, S., Dreyer, I. and Mueller-Roeber, B. (2007). PlnTFDB: an integrative plant transcription factor database. BMC Bioinfo., 8: 42.CrossRefGoogle Scholar
  105. Rivelli, A.R., James, R.A., Muns, R. and Condon, A.G. (2002). Effect of salinity on water relation and growth of wheat genotypes with contrasting sodium uptake. Funct. Plant Biol., 29: 1065–1074.CrossRefGoogle Scholar
  106. Rodríguez, M., Canales, E. and Borrás-Hidalgo, O. (2005). Molecular aspects of abiotic stress in plants. Biotechnol. Applic. 22: 1–10.Google Scholar
  107. Rohila, J.S, Jain, R.K. and Wu, R. (2002). Genetic improvement of basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Sci., 163: 525–532.CrossRefGoogle Scholar
  108. Roy, M. and Wu, R. (2002). Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci., 163: 987–992.CrossRefGoogle Scholar
  109. Roy, M. and Wu, R. (2001). Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci., 160: 869–875.PubMedCrossRefGoogle Scholar
  110. RoyChoudhury, A., Roy, C. and Sengupta, D.N. (2007). Transgenic tobacco plants overexpressing the heterologous LEA gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep. (In press).Google Scholar
  111. Rudd, J.J. and Franklin-Tong, V.E. (2001). Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol., 151: 7–33.CrossRefGoogle Scholar
  112. Rutger, T.N. (1992). Impact of mutation breeding in rice-a review. Mut. Breed. Rev., 8: 23–25.Google Scholar
  113. Sahi, C., Singh, A., Kumar, K., Blumwald, E. and Grover, A. (2006). Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integr. Genomics., 6: 263–284.PubMedCrossRefGoogle Scholar
  114. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. (2000). Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J., 23: 319–327.PubMedCrossRefGoogle Scholar
  115. Sairam, R.K. and Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci., 86: 407–421.Google Scholar
  116. Sakamoto, A, Alia and Murata, N. (1998). Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol. Biol., 38: 1011–1019.PubMedCrossRefGoogle Scholar
  117. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol., 136: 2734–2746.PubMedCrossRefGoogle Scholar
  118. Sanders, D., Brownlee, C. and Harper, J.F. (1999). Communicating with calcium. Plant Cell, 11: 691–706.PubMedCrossRefGoogle Scholar
  119. Satish, P., Gamborg, O.L. and Nabores, M.W. (1997). Establishment of stable NaCl resistant rice plant lines from anther culture: distribution pattern of K+/Na+ in callus and plant cells. Theor. Appl. Genet., 95: 1203–1209.CrossRefGoogle Scholar
  120. Scandalios, J.G. (1993). Oxygen stress and superoxide dismutases. Plant Physiol., 101: 7–12.PubMedGoogle Scholar
  121. Senadhira, D., Zapata-Arias, F.J., Gregorio, G.B., Alejar, M.S., de la Cruz, H.C., Padolina, T.F. and Galvez, A.M. (2002). Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res., 76: 103–110.CrossRefGoogle Scholar
  122. Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H. and Ohashi, Y. (1995). Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science, 270: 1988–1992.PubMedCrossRefGoogle Scholar
  123. Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q. and Chen, S.Y. (2003). An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by coldk dehydration and ABA stress. Theor. Appl. Genet., 106: 923–930.PubMedGoogle Scholar
  124. Shi, W.M., Muramoto, Y., Ueda, A. and Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273: 23–27.PubMedCrossRefGoogle Scholar
  125. Shylaraj, K.S. and Sasidharan, N.K. (2005). VTL 5: A high yielding salinity tolerant rice variety for the coastal saline ecosystems of Kerala.Google Scholar
  126. Singla-Pareek, S.L., Reddy, M.K. and Sopory, S.K. (2001). Transgenic approach towards developing abiotic stress tolerance in plants. Proc. Ind. Nat. Sci. Acad., 67: 265–284.Google Scholar
  127. Singla-Pareek, S.L., Reddy, M.K. and Sopory, S.K. (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. USA, 100: 14672–14677.PubMedCrossRefGoogle Scholar
  128. Singla-Pareek, S.L., Pareek, A., and Sopory, S.K. (2007a). Transgenic plants for dry and saline environments. In: Advances in Molecular Breeding towards Salinity and Drought Tolerance (Eds. Jenks M.A. and Hasegawa P.M.), Springer, pp. 501–530.Google Scholar
  129. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K. and Sopory, S.K. (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol., 140: 613–623.PubMedCrossRefGoogle Scholar
  130. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K. (2007b). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res., (In press).Google Scholar
  131. Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.H.D. and Qu, R. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci., 155: 1–9.PubMedCrossRefGoogle Scholar
  132. Snedden, W.A. and Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytol., 151: 35–66.CrossRefGoogle Scholar
  133. Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94: 1035–1040.PubMedCrossRefGoogle Scholar
  134. Strynadka, N.C.J., and James, M.N.G. (1989). Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58: 951–998.PubMedCrossRefGoogle Scholar
  135. Su, J. and Wu, R. (2004). Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci., 166: 941–948.CrossRefGoogle Scholar
  136. Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G. and Wu, R. (2006). Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J. Exp. Bot., 57: 1129–1135.PubMedCrossRefGoogle Scholar
  137. Sugano, S., Kaminaka, H., Rybka, Z., Catala, R., Salinas, J., Matsui, K., Ohme-Takagi, M. and Takatsuji, H. (2003). Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J., 36: 830–841.PubMedCrossRefGoogle Scholar
  138. Sulpice, R., Tsukaya, H., Nonaka, H., Mustardy, L., Chen, T.H.H. and Murata, N. (2003). Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J., 36: 165–176.PubMedCrossRefGoogle Scholar
  139. Surridge, C. (2002). The rice squad. Nature, 416: 576–578.PubMedCrossRefGoogle Scholar
  140. Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Kishitani, S., Takabe, T., Yokota, S. and Takabe, T. (1999). Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci., 148: 131–138.CrossRefGoogle Scholar
  141. Tausz, M., Sircelj, H. and Grill, D. (2004). The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot., 55: 1955–1962.PubMedCrossRefGoogle Scholar
  142. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16: 2481–2498.PubMedCrossRefGoogle Scholar
  143. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 97: 11632–11637.PubMedCrossRefGoogle Scholar
  144. Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T. and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 11: 1743–1754.PubMedCrossRefGoogle Scholar
  145. Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 5: 1529–1539.PubMedCrossRefGoogle Scholar
  146. Usami, S., Banno, H., Ito, Y., Nishimama, R. and Machida, Y. (1995). Cutting activates a 46-kDa protein kinase in plants. Proc. Natl. Acad. Sci. USA, 92: 8660–8664.PubMedCrossRefGoogle Scholar
  147. Van Camp, W., Capiau, K., Van Montagu, M., Inze, D. and Slooten, L. (1996). Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fesuperoxide dismutase in chloroplasts. Plant Physiol., 112: 1703–1714.PubMedCrossRefGoogle Scholar
  148. Verma, D., Singla-Pareek, S.L., Rajagopal, D., Reddy, M.K. and Sopory, S.K. (2007). Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci., 32: 621–628.PubMedCrossRefGoogle Scholar
  149. Vij, S. and Tyagi, A.K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J., 5: 361–380.PubMedCrossRefGoogle Scholar
  150. Villalobos, M.A., Bartels, D. and Iturriaga, G. (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol., 135: 309–324.PubMedCrossRefGoogle Scholar
  151. Vinocur, B. and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotech., 16: 123–132.PubMedCrossRefGoogle Scholar
  152. Wang, B., Luttge, U. and Ratajczak, R. (2004). Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J. Plant Physiol., 161: 285–293.PubMedCrossRefGoogle Scholar
  153. Wang, F.Z., Wang, Q.B., Kwon, S.Y., Kwak, S.S., Su, W.A. (2005a). Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant Physiol., 162: 465–472.PubMedCrossRefGoogle Scholar
  154. Wang, J., Zhang, H. and Allen, R.D. (1999). Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol., 40: 725–732.PubMedGoogle Scholar
  155. Wang, Y., Wisniewski, M.E., Meilan, R., Webb, R., Fuchigami, L. and Boyer, C. (2005b). Overexpression of cytosolic ascorbate peroxidase in tomato (Lycopersicon esculentum) confers tolerance to chilling and salt stress. J. Am. Soc. Hort. Sci., 130: 167–173.Google Scholar
  156. Wei, W.H., Zhao, W.P., Song, Y.C., Liu, L.H., Guo, L.Q. and Gu, M.G. (2003). Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays x Zea diploperennis. Hereditas, 138: 21–26.PubMedCrossRefGoogle Scholar
  157. Weigel, P., Weretilnyk, E.A. and Hanson, A.D. (1986). Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol., 82: 753–759.PubMedCrossRefGoogle Scholar
  158. Wilken, D.R., McMacken, M.L. and Rodriquez, A. (1970). Choline and betaine aldehyde oxidation by rat liver mitochondria. Biochim. Biophys. Acta., 216: 305–317.PubMedCrossRefGoogle Scholar
  159. Willekens, H., Inze, D., Van Montagu, M. and Van Camp, W. (1995). Catalase in plants. Mol. Breed., 1: 207–228.CrossRefGoogle Scholar
  160. Wingler, A., Fritzius, T., Wiemken, A., Boller, T. and Aeschbacher, R.A. (2002). Trehalose induced the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol., 124: 105–114.CrossRefGoogle Scholar
  161. Winicov, I. (1998). New Molecular approaches to improving salt tolerance in crop plants. Ann. Bot., 82: 703–710.CrossRefGoogle Scholar
  162. Wu, C.Q., Hu, H.H., Zeng, Y., Liang, D.C., Xie, K.B., Zhang, J.W., Chu, Z.H. and Xiong, L.Z. (2006). Identification of novel stress-responsive transcription factor genes in rice by cDNA array analysis. J. Integr. Plant Biol., 48: 1216–1224.CrossRefGoogle Scholar
  163. Xiao-Yan, Y., Fang, Y.A., Wei, Z.K. and Ren, Z.J. (2004). Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot. Sinica, 46: 854–861.Google Scholar
  164. Xie, J.H., Zapata, A., Shen, M. and Afza (2000). Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica, 116: 105–110.CrossRefGoogle Scholar
  165. Xiong, L. and Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15: 745–759.PubMedCrossRefGoogle Scholar
  166. Xiong, L. and Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ., 25: 131–139.PubMedCrossRefGoogle Scholar
  167. Xu, D., Duan, X., Wang, B., Hong, B., T.H.D. Ho, and Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA7, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol., 110: 249–257.PubMedGoogle Scholar
  168. Xue, Z.Y., Zhi, D.Y., Xue, G.P., Zhang, H., Zhao, Y.X. and Xia, G.M. (2004). Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci., 167: 849–859.CrossRefGoogle Scholar
  169. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K. and Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot., 56: 1975–1981.PubMedCrossRefGoogle Scholar
  170. Yamaguchi, T. and Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plants Sci., 10: 615–620.CrossRefGoogle Scholar
  171. Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress Plant Cell, 6: 251–264.PubMedCrossRefGoogle Scholar
  172. Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci., 10: 88–94.PubMedCrossRefGoogle Scholar
  173. Yan, J., Wang, J, Tissue, D, Holaday, A.S., Allen, R. and Zhang, H. (2003). Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci., 43: 1477–1483.Google Scholar
  174. Yang, X., Liang, Z. and Lu, C. (2005). Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol., 138: 2299–2309.PubMedCrossRefGoogle Scholar
  175. Yeo, A.R., Yeo, M.E., Flowers, S.A. & Flowers, T.J. (1990). Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor. Appl. Genet. 79: 377–384.CrossRefGoogle Scholar
  176. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., Lee, J.H., Kim, H.S., Lee, S.M., Yoon, H.W., Lim, C.O., Yun, D.J., Lee, S.Y., Chung, W.S., and Cho, M.J. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem., 280: 3697–3706.PubMedCrossRefGoogle Scholar
  177. Yoshida, Y. (1962). Theoretical studies on the methodological procedures of radiation breeding. Euphytica, 11: 95–111.CrossRefGoogle Scholar
  178. Zapata, F.J. and Aldemita, R.R. (1986). Induction of salt tolerance in high yielding rice varieties through mutagenesis and anther culture. In: Current Options for Cereal Improvement (Ed. Maluszyns-ki, M.), Kluwer Acad. Pub., Dordrecht, pp. 193–202.Google Scholar
  179. Zeng, L. and Shannon, M.C. (2000a). Salinity effects on seedling growth and yield components of rice. Crop Sci., 40: 996–1003.Google Scholar
  180. Zeng, L. and Shannon, M.C. (2000b). Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J., 92: 418–423.Google Scholar
  181. Zeng, L., Poss, J.A., Wilson, C., Draz, A.S.E., Gregorio, G.B. and Grieve, C.M. (2003). Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica, 129: 281–292.CrossRefGoogle Scholar
  182. Zeng, L., Shannon M.C. and Lesch, S.M. (2001). Timing of salinity stress affects rice growth and yield components. Agric. Water Manag., 48: 191–206.CrossRefGoogle Scholar
  183. Zeng, L., Shannon, M.C. and Grieve, C.M. (2002). Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica, 127: 235–245.CrossRefGoogle Scholar
  184. Zhang, H.X. and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech., 19: 765–768.CrossRefGoogle Scholar
  185. Zhang, H.X., Hodson, J.N., Williams, J.P., Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA. 98: 12832–12836.PubMedCrossRefGoogle Scholar
  186. Zhang, S. and Klessig, D.F. (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc. Natl. Acad. Sci. USA, 12: 7225–7230.CrossRefGoogle Scholar
  187. Zhao, F. and Zhang, H. (2006). Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Org. Cult., 86: 349–358.CrossRefGoogle Scholar
  188. Zhao, F., Guo, S., Zhang, H. and Zhao, Y. (2006). Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci., 170: 216–224.CrossRefGoogle Scholar
  189. Zhao, F., Wang, Z., Zhang, Q., Zhao, Y. and Zhang, H. (2006). Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J. Plant Res., 119: 95–104.PubMedCrossRefGoogle Scholar
  190. Zheng, B.S., Yang, L., Zhang, W.P., Mao, C.Z., Wu, Y.R., Yi, K.K., Liu, F.Y. and Wu, P. (2003). Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor. Appl. Genet., 207: 1505–1515.CrossRefGoogle Scholar
  191. Zhu, B., Su, J., Chang, M., Verma, DPS, Fan, Y.L. and Wu, R. (1998). Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci., 139: 41–48.CrossRefGoogle Scholar
  192. Zhu, J.K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis thaliana. Plant Physiol., 124: 941–948.PubMedCrossRefGoogle Scholar
  193. Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol., 4: 401–406.PubMedCrossRefGoogle Scholar
  194. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 53: 247–273.PubMedCrossRefGoogle Scholar
  195. Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 6: 441–445.PubMedCrossRefGoogle Scholar
  196. Zielinski, R.E. (1998). Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49: 697–725.PubMedCrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2008

Authors and Affiliations

  • Anil K. Singh
    • 1
  • Mohammad W. Ansari
    • 1
  • Ashwani Pareek
    • 1
    • 2
  • Sneh L. Singla-Pareek
    • 1
  1. 1.Plant Molecular BiologyInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Stress Physiology and Molecular Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations