Advertisement

Analysis of wearable technologies’ usage for pay-as-you-live tariffs: recommendations for insurance companies

  • Rouven WiegardEmail author
  • Nadine Guhr
  • Sonja Krylow
  • Michael H. Breitner
Abhandlung
  • 86 Downloads

Abstract

This study investigates critical success factors of wearable technologies’ usage for Pay-as-you-live (PAYL) tariffs as an emerging innovation from health insurance companies. The research model was developed based on a literature study and conducted interviews. It combines the unified theory of acceptance and use of technology 2 (UTAUT 2) models, the privacy calculus theory (PCT) and the mobile users’ information privacy concerns (MUIPC) model. By conducting an online survey with 353 participants, a structural equation modeling (SEM) approach was used to test the research model. Results show that the perceived value is an antecedent of intention to use, which comes from insurants’ risk-benefit analyses. Further, this study shows that currently privacy risk factors dominate individual’s perceived value of wearable technologies’ usage for PAYL tariffs.

Zusammenfassung

Diese Studie untersucht kritische Erfolgsfaktoren der Nutzung von Wearable-Technologien für Pay-as-You-Live-Tarife (PAYL), als aufkommende Innovation von Versicherungsunternehmen. Das Forschungsmodell wurde auf der Grundlage einer Literaturstudie und Experteninterviews entwickelt. Es kombiniert die Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2), die Privacy Calculus Theory (PCT) und das Modell der Mobile Users’ Information Privacy Concerns (MUIPC). Anhand einer Onlinebefragung mit 353 Teilnehmern wurde das Forschungsmodell mittels Strukturgleichungsmodellierung (SEM) evaluiert. Die Ergebnisse zeigen, dass der wahrgenommene Wert eines PAYL-Tarifs, der sich aus einer Risiko-Nutzen-Analyse abgeleitet wird, die Nutzungsabsicht maßgeblich beeinflusst. Darüber hinaus zeigt diese Studie, dass Risikofaktoren des Datenschutzes den wahrgenommenen Wert von Wearable-Technologien für PAYL-Tarife stark dominieren.

References

  1. Angst, C.M., Agarwal, R.: Adoption of electronic health records in the presence of privacy concerns: The elaboration likelihood model and individual persuasion. Mis Q. 33(2), 339–370 (2009)CrossRefGoogle Scholar
  2. Berglund, M.E., Duvall, J., Dunne, L.E.: A survey of the historical scope and current trends of wearable technology applications. In: Proceedings of the ACM International Symposium on Wearable Computers, pp. 40–43. (2016)Google Scholar
  3. Bhattacherjee, A., Premkumar, G.: Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Q. 28(2), 229–254 (2004)CrossRefGoogle Scholar
  4. BITKOM: Zukunft der Consumer Electronics—2015 Marktentwicklung, Schlüsseltrends, Mediennutzung Konsumentenverhalten, Neue Technologien (2015). https://www.bitkom.org/noindex/Publikationen/2015/Studien/CE-Studie-2015/150901-CE-Studie-2015-online.pdf, Accessed 27 Sept 2016Google Scholar
  5. Boontarig, W., Chutimaskul, W., Chongsuphajaisiddhi, V., Papasratorn, B.: Factors influencing the Thai elderly intention to use smartphone for e‑Health services. In: IEEE Symposium on Humanities, Science and Engineering Research, pp. 479–483. (2012)Google Scholar
  6. Chen, C.F.: Investigating structural relationships between service quality, perceived value, satisfaction, and behavioral intentions for air passengers: Evidence from Taiwan. Transp. Res. Part. A. Policy. Pract. 42(4), 709–717 (2008)CrossRefGoogle Scholar
  7. Chen, C.-C., Shih, H.-S.: A study of the acceptance of wearable technology for consumers—an analytical network process perspective. In: International journal of the analytic hierarchy process International Symposium of the Analytic Hierarchy Process, Washington, D.C., 29.06.–02.07.2014. pp. 1–5. (2014). https://www.isahp.org/uploads/p729838.pdf Google Scholar
  8. Chin, W.W.: Issues and opinion on structural equation modeling. MIS Q. 29(3), vii–xvi (1998)Google Scholar
  9. CSS Insight: Wearable momentum continues (2016). http://www.ccsinsight.com/press/company-news/2516-wearables-momentum-continues, Accessed 2 Sept 2016Google Scholar
  10. Culnan, M.J., Armstrong, P.K.: Information privacy concerns, procedural fairness, and impersonal trust: An empirical investigation. Organ. Sci. 10(1), 104–115 (1999).  https://doi.org/10.1287/orsc.10.1.104 CrossRefGoogle Scholar
  11. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of Information Technology. MIS Q. 13(3), 319–340 (1989).  https://doi.org/10.2307/249008 CrossRefGoogle Scholar
  12. Diamantopoulos, A., Riefler, P., Roth, K.P.: Advancing formative measurement models. J. Bus. Res. 61(12), 1203–1218 (2008)CrossRefGoogle Scholar
  13. Dinev, T., Hart, P.: An extended privacy calculus model for e‑commerce transactions. Inf. Syst. Res. 17(1), 61–80 (2006)CrossRefGoogle Scholar
  14. Dinev, T., Xu, H., Smith, J.H., Hart, P.: Information privacy and correlates: An empirical attempt to bridge and distinguish privacy-related concepts. Eur. J. Inf. Syst. 22(3), 295–316 (2013)CrossRefGoogle Scholar
  15. Eduard, M.N.: Development directions of services and products in Insurances. Rev. Tiner. Econ. 1(8), 89–92 (2007)Google Scholar
  16. Ernst & Young: Introducing “Pay As You Live” (PAYL) Insurance: Insurance that rewards a healthier lifestyle (2015). http://www.ey.com/Publication/vwLUAssets/EY-introducing-pay-as-you-live-payl-insurance/$FILE/EY-introducing-pay-as-you-live-payl-insurance.pdf, Accessed 29 June 2016Google Scholar
  17. Ernst, C.P., Ernst, A.: The influence of privacy risk on Smartwatch usage. 21. Americas Conference on Information Systems, San Diego, 2016. (2016). https://pdfs.semanticscholar.org/d99a/06f5fd948789a2727d5d8b3f4b99e60c87a1.pdf Google Scholar
  18. Fornell, C., Bookstein, F.L.: Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. J. Mark. Res. 19(4), 440–452 (1982)CrossRefGoogle Scholar
  19. Gao, Y., Li, H., Luo, Y.: An empirical study of wearable technology acceptance in healthcare. Ind. Manag. Data Syst. 115(9), 1704–1723 (2015)CrossRefGoogle Scholar
  20. Gefen, D., Rigdon, E.E., Straub, D.: An update and extension to SEM Guidlines for administrative and social science research. MIS Q. 35(2), iii–xiv (2011)CrossRefGoogle Scholar
  21. Gu, Z., Wei, J., Xu, F.: An empirical study on factors influencing consumers’ initial trust in wearable commerce. J. Comput. Inf. Syst. 56(1), 79–85 (2015)Google Scholar
  22. Häußermann, D.: 10 Dinge, die Versicherer mit Gesundheitsdaten tun können. Z Versicherungswes. 67(7), 215–216 (2016)Google Scholar
  23. Hew, J.J., Lee, V.H., Ooi, K.B., & Wei, J.: What catalyses mobile apps usage intention: an empirical analysis. Industrial Management & Data Systems, 115(7), 1269–1291 (2015)CrossRefGoogle Scholar
  24. Johnston, A.C., Warkentin, M.: Fear appeals and information security behaviors: An empirical study. MIS Q. 34(3), 549–566 (2010)CrossRefGoogle Scholar
  25. Kim, K.J., Shin, D.H.: An acceptance model for smart watches: Implications for the adoption of future wearable technology. Internet Res. 25(4), 527–541 (2015).  https://doi.org/10.1108/intr-05-2014-0126 CrossRefGoogle Scholar
  26. Kim, H.W., Chan, H.C., Gupta, S.: Value-based adoption of mobile internet: An empirical investigation. Decis. Support. Syst. 43(1), 111–126 (2007)CrossRefGoogle Scholar
  27. Lee, A.S., Baskerville, R.L.: Generalizing generalizability in information systems research. Inf. Syst. Res. 14(3), 221–243 (2003)CrossRefGoogle Scholar
  28. Li, H., Wu, J., Gao, Y., Shi, Y.: Examining individuals’ adoption of healthcare wearable devices: An empirical study from privacy calculus perspective. Int. J. Med. Inform. 88, 8–17 (2016)CrossRefGoogle Scholar
  29. Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model. Inf. Syst. Res. 15(4), 336–355 (2004)CrossRefGoogle Scholar
  30. Mayring, P.: Qualitative Inhaltsanalyse. Grundlagen und Techniken, 11th edn. Beltz, Weinheim (2010)Google Scholar
  31. Nürnberg, V.: E‑Health und M(obile)-Health: Chancen und Risiken-das Aus für die Solidargemeinschaft. Z Versicherungswes. 66(8), 246–250 (2015)Google Scholar
  32. Pfeiffer, J., von Entress-Fuersteneck, M., Urbach, N., Buchwald, A.: Quantify-me: Consumer acceptance of wearable self-tracking devices. In: Proceedings of the European conference on information systems (2016)Google Scholar
  33. Polites, G.L., Roberts, N., Thatcher, J.: Conceptualizing models using multidimensional constructs: A review and guidelines for their use. Eur. J. Inf. Syst. 21(1), 22–48 (2012)CrossRefGoogle Scholar
  34. PWC: The Wearable Life 2.0 Connected living in a wearable world (2016). https://www.pwc.se/sv/pdf-reports/the-wearable-life-2-0.pdf. Consumer Intelligence SeriesGoogle Scholar
  35. Rogers, E.M.: Diffusion of innovations, 4th edn. Free Press, New York (1995)Google Scholar
  36. Rundshagen, M.: Versicherungsrisiken leichter bewerten dank medizinischer Innovation. Z Versicherungswes. 66(17), 560–562 (2015)Google Scholar
  37. Smith, H.J., Milberg, S.J., Burke, S.J.: Information privacy: Measuring individuals’ concerns about organizational practices. MIS Q. 20(2), 167–196 (1996)CrossRefGoogle Scholar
  38. Stewart, K.A., Segars, A.H.: An empirical examination of the concern for information privacy instrument. Inf. Syst. Res. 13(1), 36–49 (2002)CrossRefGoogle Scholar
  39. Straub, D., Boudreau, M.C., Gefen, D.: Validation guidelines for IS positivist research. Commun. Assoc. Inf. Syst. 13(1), 63 (2004)Google Scholar
  40. Sultan, N.: Reflective thoughts on the potential and challenges of wearable technology for healthcare provision and medical education. Int. J. Inf. Manage. 35(5), 521–526 (2015)CrossRefGoogle Scholar
  41. Tene, O., Polonetsky, J.: Big data for all: Privacy and user control in the Age of Analytics. Northwest. J. Technol. Intellect. Prop. 11(5), 240–273 (2013)Google Scholar
  42. Turhan, G.: An assessment towards the acceptance of wearable technology to consumers in Turkey: The application to smart bra and t‑shirt products. J. Text. Inst. 104(4), 375–395 (2013)CrossRefGoogle Scholar
  43. Venkatesh, V.: Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Inf. Syst. Res. 11(4), 342–365 (2000)CrossRefGoogle Scholar
  44. Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. Mis Q. 36(1), 157–178 (2012)CrossRefGoogle Scholar
  45. Wei, J.: How wearables intersect with the cloud and the Internet of things: Considerations for the developers of wearables. Ieee Consumer Electron. Mag. 3(3), 53–56 (2014)CrossRefGoogle Scholar
  46. Xu, H., Dinev, T., Smith, H.J., Hart, P.: Examining the formation of individual’s privacy concerns: Toward an integrative view. In: Proceedings of the International Conference on Information Systems (2008)Google Scholar
  47. Xu, H., Gupta, S., Rosson, M.B., Carroll, J.M.: Measuring mobile users’ concerns for information privacy. In: Proceedings of the International Conference on Information Systems, ICIS 2012 International Conference on Information Systems, ICIS, Orlando, Florida, USA, 16.-19.12.2012. pp. 2278–2293. Curran Associates, Inc., Red Hook (2012)Google Scholar
  48. Xu, H., Teo, H.H., Tan, B.C., Agarwal, R.: The role of push-pull technology in privacy calculus: The case of location-based services. J. Manag. Inf. Syst. 26(3), 135–174 (2009)CrossRefGoogle Scholar
  49. Yang, H., Yu, J., Zo, H., Choi, M.: User acceptance of wearable devices: An extended perspective of perceived value. Telematics Informatics 33(2), 256–269 (2016)CrossRefGoogle Scholar
  50. Yoon, H., Shin, D.H., Kim, H.: Health information tailoring and data privacy in a smart watch as a preventive health tool. In: Proceedings of the International Conference on Human-Computer Interaction, pp. 537–548. Springer, Heidelberg, Berlin, New York (2015)Google Scholar
  51. Young, E.: Do you want your company to know how fit you are? (2015). http://www.bbc.com/news/business-33261116, Accessed 25 Sept 2016Google Scholar
  52. Yuan, S., Ma, W., Kanthawala, S., Peng, W.: Keep using my health apps: Discover users’ perception of health and fitness apps with the UTAUT2 model. Telemedicine E‑health. 21(9), 735–741 (2015)CrossRefGoogle Scholar
  53. Zeithaml, V.A.: Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 52, 2–22 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Rouven Wiegard
    • 1
    Email author
  • Nadine Guhr
    • 1
  • Sonja Krylow
    • 1
  • Michael H. Breitner
    • 1
  1. 1.Institut für WirtschaftsinformatikLeibniz Universität HannoverHannoverGermany

Personalised recommendations