Advertisement

Memetic Computing

, Volume 10, Issue 2, pp 177–198 | Cite as

An improved optimization method based on krill herd and artificial bee colony with information exchange

  • Heqi Wang
  • Jiao-Hong YiEmail author
Regular Research Paper

Abstract

This study presents a robust optimization algorithm based on hybridization of krill herd (KH) and artificial bee colony (ABC) methods and the information exchange concept. The global optimal solutions found by the proposed hybrid KH and ABC (KHABC) algorithm are considered as a neighbor food source for onlooker bees in ABC. Thereafter, a local search is performed by the onlooker bees in order to find a better solution around the given neighbor food source. Both the methods—the KH and ABC—share the globally best solutions through the information exchange process between the krill and bees. Based on the results, the exchange process significantly improves exploration and exploitation of the hybrid method. Besides, a focused elitism scheme is introduced to enhance the performance of the developed algorithm. The validity of the KHABC method is verified using thirteen unconstrained benchmark functions, twenty-one CEC 2017 constrained real-parameter optimization problems, and ten CEC 2011 real world problems. The proposed method clearly demonstrates its ability to be a competitive optimization tool towards solving benchmark functions and real world problems.

Keywords

Global optimization Krill herd Artificial bee colony Elitism scheme Constrained optimization Real world problems 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20150239) and National Natural Science Foundation of China (No. 61503165).

References

  1. 1.
    Kundu S, Parhi DR (2016) Navigation of underwater robot based on dynamically adaptive harmony search algorithm. Memet Comput 8(2):125–146. doi: 10.1007/s12293-016-0179-0 CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Liu J, Zhou M, Jiang Z (2016) A multi-objective memetic algorithm based on decomposition for big optimization problems. Memet Comput 8(1):45–61. doi: 10.1007/s12293-015-0175-9 CrossRefGoogle Scholar
  3. 3.
    Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. doi: 10.1023/A:1008202821328 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beyer H, Schwefel H (2002) Nat Comput. Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. 5.
    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, vol 412. Addison-Wesley, BostonzbMATHGoogle Scholar
  6. 6.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471. doi: 10.1007/s10898-007-9149-x MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wang G-G, Deb S, Gao X-Z, Coelho LdS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J of Bio Inspir Comput 8(6):394–409. doi: 10.1504/IJBIC.2016.10002274 CrossRefGoogle Scholar
  8. 8.
    Wang G-G (2016) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput. doi: 10.1007/s12293-016-0212-3 CrossRefGoogle Scholar
  9. 9.
    Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. doi: 10.1177/003754970107600201 CrossRefGoogle Scholar
  10. 10.
    Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl. doi: 10.1007/s00521-015-1923-y CrossRefGoogle Scholar
  11. 11.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. Paper presented at the proceeding of the IEEE international conference on neural networks, Perth, Australia, 27 November–1 DecemberGoogle Scholar
  12. 12.
    Le MN, Ong Y-S, Jin Y, Sendhoff B (2009) Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memet Comput 1(3):175–190. doi: 10.1007/s12293-009-0016-9 CrossRefGoogle Scholar
  13. 13.
    Meuth R, Lim M-H, Ong Y-S, Wunsch DC (2009) A proposition on memes and meta-memes in computing for higher-order learning. Memet Comput 1(2):85–100. doi: 10.1007/s12293-009-0011-1 CrossRefGoogle Scholar
  14. 14.
    Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845. doi: 10.1016/j.cnsns.2012.05.010 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms. ACM Comput Surv 45(3):1–33. doi: 10.1145/2480741.2480752 CrossRefzbMATHGoogle Scholar
  16. 16.
    Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34. doi: 10.1016/j.ins.2014.02.123
  17. 17.
    Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2016) A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int J of Bio Inspir Comput 8(5):286–299. doi: 10.1504/IJBIC.2016.10000414 CrossRefGoogle Scholar
  18. 18.
    Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solitons Fractals 78:10–21. doi: 10.1016/j.chaos.2015.06.020 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370. doi: 10.1016/j.neucom.2013.08.031 CrossRefGoogle Scholar
  20. 20.
    Bolaji ALa, Al-Betar MA, Awadallah MA, Khader AT, Abualigah LM (2016) A comprehensive review: krill herd algorithm (KH) and its applications. Appl Soft Compt 49:437–446. doi: 10.1016/j.asoc.2016.08.041 CrossRefGoogle Scholar
  21. 21.
    Bolaji AL, Khader AT, Al-Betar MA, Awadallah MA (2014) University course timetabling using hybridized artificial bee colony with hill climbing optimizer. J Comput Sci 5(5):809–818. doi: 10.1016/j.jocs.2014.04.002 CrossRefGoogle Scholar
  22. 22.
    Kıran SM, Gündüz M (2013) A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl Soft Compt 13(4):2188–2203. doi: 10.1016/j.asoc.2012.12.007 CrossRefGoogle Scholar
  23. 23.
    Awadallah MA, Bolaji ALa, Al-Betar MA (2015) A hybrid artificial bee colony for a nurse rostering problem. Appl Soft Compt 35:726–739. doi: 10.1016/j.asoc.2015.07.004 CrossRefGoogle Scholar
  24. 24.
    Bullinaria JA, AlYahya K (2014) Artificial bee colony training of neural networks: comparison with back-propagation. Memet Comput 6(3):171–182. doi: 10.1007/s12293-014-0137-7 CrossRefGoogle Scholar
  25. 25.
    Li JQ, Pan QK, Duan PY (2016) An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping. IEEE Trans Cybern 46(6):1311–1324. doi: 10.1109/TCYB.2015.2444383 CrossRefGoogle Scholar
  26. 26.
    Krüger TJ, Davidović T, Teodorović D, Šelmić M (2016) The bee colony optimization algorithm and its convergence. Int J Bio Inspir Comput 8(5):340–354. doi: 10.1504/IJBIC.2016.079573 CrossRefGoogle Scholar
  27. 27.
    Hussein WA, Sahran S, Sheikh Abdullah SNH (2017) The variants of the bees algorithm (BA): a survey. Artif Intell Rev 47(1):67–121. doi: 10.1007/s10462-016-9476-8 CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Wu L (2012) Artificial bee colony for two dimensional protein folding. Adv Electr Eng Syst 1(1):19–23Google Scholar
  29. 29.
    Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871. doi: 10.1007/s00521-012-1304-8 CrossRefGoogle Scholar
  30. 30.
    Wang G-G, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016) Chaotic cuckoo search. Soft Comput 20(9):3349–3362. doi: 10.1007/s00500-015-1726-1 CrossRefGoogle Scholar
  31. 31.
    Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanos 10(10):2318–2328. doi: 10.1166/jctn.2013.3207 CrossRefGoogle Scholar
  32. 32.
    Li Z-Y, Yi J-H, Wang G-G (2015) A new swarm intelligence approach for clustering based on krill herd with elitism strategy. Algorithms 8(4):951–964. doi: 10.3390/a8040951 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wang G-G, Chang B, Zhang Z (2015) A multi-swarm bat algorithm for global optimization. In: 2015 IEEE congress on evolutionary computation (CEC 2015), Sendai, Japan, May 25–28, 2015. IEEE, pp 480–485. doi: 10.1109/CEC.2015.7256928
  34. 34.
    Wang G-G, Lu M, Zhao X-J (2016) An improved bat algorithm with variable neighborhood search for global optimization. Paper presented at the 2016 IEEE congress on evolutionary computation (IEEE CEC 2016), Vancouver, 25–29 July, 2016Google Scholar
  35. 35.
    Wang G-G, Deb S, Gandomi AH, Alavi AH (2016) Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 177:147–157. doi: 10.1016/j.neucom.2015.11.018
  36. 36.
    Das S, Suganthan P (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur Univ., Nanyang Technol. Univ., Kolkata, IndiaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.School of Environmental Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouChina

Personalised recommendations