Advertisement

Memetic Computing

, Volume 10, Issue 2, pp 135–150 | Cite as

Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation

  • Yanhong FengEmail author
  • Juan Yang
  • Congcong Wu
  • Mei Lu
  • Xiang-Jun Zhao
Regular Research Paper

Abstract

Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to enhance its global optimization ability. Here, 12 one-dimensional classical chaotic maps are used to tune two main migration processes of monarch butterflies. Meanwhile, applying Gaussian mutation operator to some worst individuals can effectively prevent premature convergence of the optimization process. The performance of CMBO is verified and analyzed by three groups of large-scale 0–1 knapsack problems instances. The results show that the introduction of appropriate chaotic map and Gaussian perturbation can significantly improve the solution quality together with the overall performance of the proposed CMBO algorithm. The proposed CMBO can outperform the standard MBO and other eight state-of-the-art canonical algorithms.

Keywords

Monarch butterfly optimization Chaotic maps Gaussian mutation operator 0–1 Knapsack problems 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 61272297, and 61402207) and Hebei GEO Universtiy Youth Foundation (No. QN201601).

References

  1. 1.
    Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, FromeGoogle Scholar
  2. 2.
    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of world congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214Google Scholar
  3. 3.
    Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int J Bio-Inspir Comput 7(6):386–401CrossRefGoogle Scholar
  4. 4.
    Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput (accepted)Google Scholar
  5. 5.
    Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput (accepted)Google Scholar
  6. 6.
    Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, pp 1–5Google Scholar
  7. 7.
    Wang GG, Guo LH, Wang HQ et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871CrossRefGoogle Scholar
  8. 8.
    Wang GG, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370CrossRefGoogle Scholar
  9. 9.
    Cui ZH, Fan S, Zeng J et al (2013) Artificial plant optimization algorithm with three-period photosynthesis. Int J Bio-Inspir Comput 5(2):133–139CrossRefGoogle Scholar
  10. 10.
    Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimization. Eng Optim 38(2):129–154MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tawhid MA, Ali AF (2016) A simplex social spider algorithm for solving integer programming and minimax problems. Mem Comput 1–20. doi: 10.1007/s12293-016-0180-7
  12. 12.
    Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl 1–20. doi: 10.1007/s00521-015-1923-y
  13. 13.
    Feng YH, Wang GG, Deb S et al (2015) Solving 0–1 Knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 1–16. doi: 10.1007/s00521-015-2135-1
  14. 14.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471MathSciNetCrossRefGoogle Scholar
  15. 15.
    Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pecora L, Carroll T (1990) Synchronization in chaotic system. Phys Rev Lett 64:821MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yang DX, Li G, Cheng GD (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solit Fract 34(4):1366–1375MathSciNetCrossRefGoogle Scholar
  18. 18.
    Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216:2687–2699zbMATHGoogle Scholar
  19. 19.
    Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solit Fract 40(4):1715–1734MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gharooni-Fard G, Moein-Darbari F, Deldari H, Morvaridi A (2010) Scheduling of scientific workflows using a chaos-genetic algorithm. Proc Comput Sci 1(1):1445–1454CrossRefGoogle Scholar
  21. 21.
    Wang GG, Deb S, Gandomi AH et al (2015) Chaotic cuckoo search. Soft Comput 5:1–14Google Scholar
  22. 22.
    Wang GG, Guo LH, Gandomi AH et al (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mathews GB (1988) On the partition of numbers. Introduction to analysis of the infinite. Springer, New YorkGoogle Scholar
  24. 24.
    Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085MathSciNetzbMATHGoogle Scholar
  25. 25.
    Coelho LDS, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34(3):1905–1913CrossRefGoogle Scholar
  26. 26.
    Rudolph G (1997) Local convergence rates of simple evolutionary algorithms with Cauchy mutations. IEEE Trans Evol Comput 1(4):249–258MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: Evolutionary computation, IEEE international conference onGoogle Scholar
  28. 28.
    He YC, Wang XZ, Kou YZ (2007) A binary differential evolution algorithm with hybrid encoding. J Comput Res Dev 44(9):1476–1484CrossRefGoogle Scholar
  29. 29.
    He YC, Song JM, Zhang JM, Gou HY (2015) Research on genetic algorithms for solving static and dynamic knapsack problems. Appl Res Comput 32(4):1011–1015Google Scholar
  30. 30.
    Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, AmsterdamzbMATHGoogle Scholar
  31. 31.
    He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117Google Scholar
  32. 32.
    Patvardhan C, Bansal S, Srivastav A (2015) Quantum-inspired evolutionary algorithm for difficult knapsack problems. Memetic Comput 7(2):135–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yanhong Feng
    • 1
    Email author
  • Juan Yang
    • 2
  • Congcong Wu
    • 1
  • Mei Lu
    • 3
  • Xiang-Jun Zhao
    • 3
  1. 1.School of Information EngineeringHebei GEO UniversityShijiazhuangChina
  2. 2.School of Mathematical SciencesKaili UniversityKailiChina
  3. 3.School of Computer Science and TechnologyJiangsu Normal UniversityXuzhouChina

Personalised recommendations