Advertisement

Memetic Computing

, Volume 8, Issue 1, pp 63–82 | Cite as

Analysis for optimal pattern synthesis of time modulated concentric circular antenna array using memetic firefly algorithm

  • Gopi Ram
  • Durbadal Mandal
  • Sakti Prasad Ghoshal
  • Rajib Kar
Regular Research Paper

Abstract

In this paper the optimal performance of time modulated nine-ring concentric circular antenna array with isotropic elements has been studied based on an evolutionary optimization algorithm hybridized with local heuristic search called memetic firefly algorithm (MFA). The firefly algorithm has been applied followed by Nelder–Mead simplex method for the local heuristic search to achieve the optimal fine tuning. Other algorithms like real coded genetic algorithm (RGA) and particle swarm optimization (PSO) have been used for the comparison purpose. The comparisons among the algorithms have been made with two case studies as Case-1 and Case-2, and with two different fitness functions \((f_{{ fitness}1}, f_{{ fitness}2})\) and three control parameters like inter-element uniform/non-uniform spacing in rings, inter-ring radii and the switching-on times of rings. The simulation results show that the MFA outperforms RGA and PSO for both the cases Case-1, Case-2 and \(f_{{ fitness}1}\), \(f_{{ fitness}2}\), respectively with respect to better side lobe level (SLL). The fitness function \(f_{{ fitness}2}\) is better than the \(f_{{ fitness}1}\) with respect to sideband level. Apart from this, powers radiated at the centre/fundamental frequency and the first two sideband frequencies, and dynamic efficiency have been computed. It is found that power radiated by any sideband frequency is much less as compared to the power radiated at the centre frequency. It has been observed that as the sideband frequency increases, SBL decreases to the greater extent as compared to SLL. As per authors’ knowledge there is a little research contribution by any other previous researcher regarding numerical computation of radiation characteristics as SBLs, powers radiated at the fundamental frequency and its two sideband frequencies, directivity, and dynamic efficiency for time-modulated CCAA.

Keywords

Concentric circular arrays Time modulation MFA  Memetic computing SLL FNBW RF switch 

References

  1. 1.
    Ballanis A (1997) Antenna theory analysis and design, 2nd edn. Willey, New YorkGoogle Scholar
  2. 2.
    Elliott RS (2003) Antenna theory and design. Wiley, New Jersey (revised edition)CrossRefGoogle Scholar
  3. 3.
    Shanks HE, Bickmore RW (1959) Four-dimensional electromagnetic radiators. Can J Phys 37:263–275CrossRefzbMATHGoogle Scholar
  4. 4.
    Kummer WH, Villeneuve AT, Fong TS et al (1963) Ultra-low sidelobes from time-modulated arrays [J]. IEEE Trans Antennas Propag 11(5):633–639CrossRefGoogle Scholar
  5. 5.
    Lewis BL, Evins JB (1983) A new technique for reducing radar response to signals entering antenna sidelobes [J]. IEEE Trans Antennas Propag 31(6):993–996CrossRefGoogle Scholar
  6. 6.
    Yang S, Gan YB, Qing A (2002) Sideband suppression in timemodulated linear arrays by the differential evolution algorithm. IEEE Antennas Wirel Propag Lett 1:173–175CrossRefGoogle Scholar
  7. 7.
    Yang S, Gan YB, Tan PK (2003) A new technique for power-pattern synthesis in time-modulated linear arrays. IEEE Antennas Wirel Propag Lett 2:285–287CrossRefGoogle Scholar
  8. 8.
    Fondevila J, Bregains JC, Ares F, Moreno E (2004) Optimizing uniformly excited arrays through time modulation. IEEE Antennas Wirel Propag Lett 3:298–301CrossRefGoogle Scholar
  9. 9.
    Yang S, Gan YB, Qing A, Tan PK (2005) Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Trans Antennas Propag 53(7):2337–2339CrossRefGoogle Scholar
  10. 10.
    Yang S, Gan YB, Qing A (2004) Antenna array pattern nulling using a differential evolution algorithm. Int J RF Microwave Comput-Aided Eng 14:57–63CrossRefGoogle Scholar
  11. 11.
    Zhu Q, Yang S, Zheng L, Nie Z (2012) Design of a low sidelobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps. IEEE Trans Antennas Propag 60(9):4436–4439CrossRefMathSciNetGoogle Scholar
  12. 12.
    Yang Shiwen, Gan Yeow Beng, Tan Peng Kiang (2004) Evaluation of directivity and gain for time-modulated linear antenna arrays. Microwave Opti Technol Lett 42(2):167–171CrossRefGoogle Scholar
  13. 13.
    Das R (1966) Concentric ring array. IEEE Trans Antennas Propag 14(3):398–400CrossRefGoogle Scholar
  14. 14.
    Stearns C, Stewart A (1965) An investigation of concentric ring antennas with low sidelobes. IEEE Trans Antennas Propag 13(6):856–863CrossRefGoogle Scholar
  15. 15.
    Goto N, Cheng DK (1970) On the synthesis of concentric-ring arrays. IEEE Proc 58(5):839–840CrossRefGoogle Scholar
  16. 16.
    Huebner MDA (1978) Design and optimization of small concentric ring arrays. In: Proceedings of IEEE AP-S symposium, pp 455–458Google Scholar
  17. 17.
    Holtrup MG, Margulnaud A, Citerns J (2001) Synthesis of electronically steerable antenna arrays with element on concentric rings with reduced sidelobes. In: Proceesings of IEEE AP-S symposium, pp 800–803Google Scholar
  18. 18.
    Dessouky M, Sharshar H, Albagory Y (2006) Efficient sidelobe reduction technique for small-sized concentric circular arrays. Progr Electromagn Res PIER 65:187–200CrossRefGoogle Scholar
  19. 19.
    Haupt RL (2008) Optimjzed element spacing for low sidelobe concentric ring arrays. IEEE Trans Antennas Propag 56(1):266–268CrossRefGoogle Scholar
  20. 20.
    Munson DC, O’Brian JD, Jenkins WK (1983) A tomographic formulation of spot-light mode synthetic aperture radar. Proc IEEE 71:917–925CrossRefGoogle Scholar
  21. 21.
    Compton RT (1978) An adaptive array in a spread-spectrum communication system. Proc IEEE 66:289–298CrossRefGoogle Scholar
  22. 22.
    Kak AC (1985) Tomographic imaging with diffracting and non diffracting sources. In: Haykin S (ed) Array signal processing, Prentice- Hall, Englewood CliffsGoogle Scholar
  23. 23.
    Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey of memetic computing. IEEE Trans Evol Comput 15(5):591–607CrossRefGoogle Scholar
  24. 24.
    Lim MH, Krasnogor N, Ong YS, Gustafson S (2012) Editorial. Memet Comput 4:1CrossRefGoogle Scholar
  25. 25.
    Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3:379–397CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Fister I, Yang X-S, Brest J, Iztok Jr (2013) Fister “4—memetic self-adaptive firefly algorithm”. In: Swarm intelligence and bio-inspired computation, theory and applications, pp 73–102Google Scholar
  28. 28.
    Fister I Jr, Yang XS, Fister I, Brest J (2012) Memetic firefly algorithm for combinatorial optimization. In: Filipič B, Šilc J (eds) Bioinspired optimization methods and their applications: Proceedings of the fifth international conference on bioinspired optimization methods and their applications— BIOMA 2012. Jozef Stefan Institute, pp 75–86Google Scholar
  29. 29.
    António Carlos Conceição (2014) A memetic algorithm based on multiple learning procedures for global optimal design of composite structures. Memet Comput 6:113–131. doi: 10.1007/s12293-014-0132-z CrossRefGoogle Scholar
  30. 30.
    Saha Suman Kumar, Kar Rajib, Mandal Durbadal, Ghoshal Sakti Prasad (2013) Design and simulation of FIR band pass and band stop filters using gravitational search algorithm. Memet Comput 5:311–321. doi: 10.1007/s12293-013-0122-6 CrossRefGoogle Scholar
  31. 31.
    Panduro MA, Mendez AL, Dominguez R, Romero G (2006) Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. Int J Electron Commun (AEO) 60:713–717CrossRefGoogle Scholar
  32. 32.
    Panduro MA, Brizuela CA, Balderas LI, Acosta DA (2009) A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Progr. Electromag Res B 13:171–186CrossRefGoogle Scholar
  33. 33.
    Ram Gopi, Mandal D, Kar R, Ghoshal SP (2013) Optimized hyper beamforming of linear antenna arrays using collective animal behaviour. Sci World J Hindwai 2013:1–13 (Article ID 982017)Google Scholar
  34. 34.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948CrossRefGoogle Scholar
  35. 35.
    Helal Ayah M, Abdelbar Ashraf M (2014) Incorporating domain-specific heuristics in a particle swarm optimization approach to the quadratic assignment problem. Memet Comput 6:241–254. doi: 10.1007/s12293-014-0141-y CrossRefGoogle Scholar
  36. 36.
    Lalwani Soniya, Kumar Rajesh, Gupta Nilama (2015) A novel two-level particle swarm optimization approach for efficient multiple sequence alignment. Memet Comput 7:119–133. doi: 10.1007/s12293-015-0157-y CrossRefGoogle Scholar
  37. 37.
    Shihab M, Najjar Y, Dib N, Khodier M (2008) Design of non-uniform circular antenna arrays using particle swarm optimization. J Electr Eng 59(4):216–220Google Scholar
  38. 38.
    Mandai D, Ghoshal SP, Bhattacharjee AK (2010) Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique. J Infrared Milli Terahz Waves 31(6):667–680Google Scholar
  39. 39.
    Mandai D, Ghoshal SP, Bhattacharjee AK (2010) Radiation pattern optimization for concentric circular antenna array with central element feeding using craziness based particle swarm optimization. Int J RF Microwave Comput-Aided Eng 20(5):577–586CrossRefGoogle Scholar
  40. 40.
    Zheng L, Yang S, Zhu Q, Nie Z (2011) Synthesis of pencil-beam patterns with time-modulated concentric circular ring antenna arrays. In: PIERS Proceedings, Suzhou, China, September, pp 372–376Google Scholar
  41. 41.
    Yang XS (2009) Firefly algorithms for multimodal optimization. In: Proceedings of the 5th international conference on stochastic algorithms: foundations and applications, SAGA 2009, vol 5792. LNCS-Springer, pp 169–178Google Scholar
  42. 42.
    Basu B, Mahanti GK (2011) Firefly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Progr Electromag Res B 32:169–190CrossRefGoogle Scholar
  43. 43.
    Yang XS, Hosseini SS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186CrossRefGoogle Scholar
  44. 44.
    Yang XS, Deb S (2010) Eagle strategy using Levy walk and firefly algorithms for stochastic optimization, nature inspired cooperative strategies for optimization (NICSO). Stud Comput Intell 284:101–111CrossRefGoogle Scholar
  45. 45.
    Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184CrossRefGoogle Scholar
  46. 46.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(2):308–313CrossRefzbMATHGoogle Scholar
  47. 47.
    Hong-feng X, Guan-Zheng T (2010) A novel particle swarm optimizer without velocity: simplex-PSO. J Centr South Univ 17(2):349–356CrossRefGoogle Scholar
  48. 48.
    Walpole RE, Myer RH (1978) Probability and statistics for engineers and scientists. Macmillan, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gopi Ram
    • 1
  • Durbadal Mandal
    • 1
  • Sakti Prasad Ghoshal
    • 2
  • Rajib Kar
    • 1
  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology DurgapurDurgapurIndia
  2. 2.Department of Electrical EngineeringNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations