Advertisement

Memetic Computing

, Volume 7, Issue 3, pp 215–230 | Cite as

Accelerating Artificial Bee Colony algorithm with adaptive local search

  • Shimpi Singh Jadon
  • Jagdish Chand BansalEmail author
  • Ritu Tiwari
  • Harish Sharma
Regular Research Paper

Abstract

Artificial Bee Colony (ABC) algorithm has been emerged as one of the latest Swarm Intelligence based algorithm. Though, ABC is a competitive algorithm as compared to many other optimization techniques, the drawbacks like preference on exploration at the cost of exploitation and skipping the true solution due to large step sizes, are also associated with it. In this paper, two modifications are proposed in the basic version of ABC to deal with these drawbacks: solution update strategy is modified by incorporating the role of fitness of the solutions and a local search based on greedy logarithmic decreasing step size is applied. The modified ABC is named as accelerating ABC with an adaptive local search (AABCLS). The former change is incorporated to guide to not so good solutions about the directions for position update, while the latter modification concentrates only on exploitation of the available information of the search space. To validate the performance of the proposed algorithm AABCLS, \(30\) benchmark optimization problems of different complexities are considered and results comparison section shows the clear superiority of the proposed modification over the Basic ABC and the other recent variants namely, Best-So-Far ABC (BSFABC), Gbest guided ABC (GABC), Opposition based levy flight ABC (OBLFABC) and Modified ABC (MABC).

Keywords

Artificial Bee Colony Memetic algorithm Optimization Exploration–exploitation Swarm Intelligence  

References

  1. 1.
    Akay B, Karaboga D (2010) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci. doi: 10.1016/j.ins.2010.07.015
  2. 2.
    Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11(2):2888–2901CrossRefGoogle Scholar
  4. 4.
    Chand Bansal Jagdish, Harish Sharma, Atulya Nagar (2013) Memetic search in artificial bee colony algorithm. Soft Comput 17(10):1911–1928CrossRefGoogle Scholar
  5. 5.
    Bansal JC, Sharma H (2012) Cognitive learning in differential evolution and its application to model order reduction problem for single-input single-output systems. Memet Comput 4(3):209–229Google Scholar
  6. 6.
    Brest J, Zumer V, Maucec MS (2006) Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: IEEE congress on evolutionary computation, 2006. CEC 2006, pp 215–222, IEEEGoogle Scholar
  7. 7.
    Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic algorithm for online and offline control design of pmsm drives. Syst Man Cybern Part B: Cybern IEEE Trans 37(1):28–41CrossRefGoogle Scholar
  8. 8.
    Caponio A, Neri F, Tirronen V (2009) Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput-Fusion Found Methodol Appl 13(8):811–831Google Scholar
  9. 9.
    Cotta C, Neri F (2012) Memetic algorithms in continuous optimization. Handbook of memetic algorithms, pp 121–134Google Scholar
  10. 10.
    Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–911MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Diwold K, Aderhold A, Scheidler A, Middendorf M (2011) Performance evaluation of artificial bee colony optimization and new selection schemes. Memet Comput 3(3):149–162Google Scholar
  12. 12.
    Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In Evolutionary computation, 1999. CEC 99. In: Proceedings of the 1999 congress on, vol 2, IEEEGoogle Scholar
  13. 13.
    El-Abd M (2011) Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf Sci 182(1):243–263MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fister I, Fister Jr I, Brest J, Žumer V (2012) Memetic artificial bee colony algorithm for large-scale global optimization. Arxiv preprint arXiv:1206.1074
  15. 15.
    Gallo C, Carballido J, Ponzoni I (2009) Bihea: a hybrid evolutionary approach for microarray biclustering. In: Guimarães KS, Panchenko A, Przytycka TM (eds) Advances in bioinformatics and computational biology. Springer, Berlin, Heidelberg, pp 36–47Google Scholar
  16. 16.
    Gao W, Liu S (2011) A modified artificial bee colony algorithm. Comput Oper Res 39(3):687–697Google Scholar
  17. 17.
    Gao Y, An X, Liu J (2008) A particle swarm optimization algorithm with logarithm decreasing inertia weight and chaos mutation. In: Computational intelligence and security, 2008. CIS’08. International conference on, vol 1, pp 61–65, IEEEGoogle Scholar
  18. 18.
    Goh CK, Ong YS, Tan KC (2009) Multi-objective memetic algorithms, vol 171. Springer Verlag, BerlinCrossRefzbMATHGoogle Scholar
  19. 19.
    Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J ACM (JACM) 8(2):212–229CrossRefzbMATHGoogle Scholar
  20. 20.
    Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst 141(1):59–88MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–223CrossRefGoogle Scholar
  22. 22.
    Kang F, Li J, Ma Z (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181(16):3508–3531MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kang F, Li J, Ma Z, Li H (2011) Artificial bee colony algorithm with local search for numerical optimization. J Softw 6(3):490–497CrossRefGoogle Scholar
  24. 24.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report TR06. Erciyes University Press, ErciyesGoogle Scholar
  25. 25.
    Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Dervis Karaboga, Bahriye Akay (2011) A modified artificial bee colony (abc) algorithm for constrained optimization problems. Appl Soft Comput 11(3):3021–3031CrossRefGoogle Scholar
  27. 27.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural networks, 1995. In: Proceedings, IEEE international conference on, vol 4, pp 1942–1948, IEEEGoogle Scholar
  28. 28.
    Knowles J, Corne D, Deb K (2008) Multiobjective problem solving from nature: from concepts to applications (Natural computing series). Springer, BerlinCrossRefGoogle Scholar
  29. 29.
    Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mezura-Montes E, Velez-Koeppel RE (2010) Elitist artificial bee colony for constrained real-parameter optimization. In: 2010 Congress on evolutionary computation (CEC’2010). IEEE Service Center, Barcelona, Spain, pp 2068–2075Google Scholar
  31. 31.
    Mininno E, Neri F (2010) A memetic differential evolution approach in noisy optimization. Memet Comput 2(2):111–135CrossRefGoogle Scholar
  32. 32.
    Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P. Report 826:1989Google Scholar
  33. 33.
    Neri F, Tirronen V (2009) Scale factor local search in differential evolution. Memet Comput Springer 1(2):153–171CrossRefGoogle Scholar
  34. 34.
    Neri F, Cotta C, Moscato P (eds) (2012) Handbook of memetic algorithms. Springer, Studies in computational intelligence, vol 379Google Scholar
  35. 35.
    Nguyen QH, Ong YS, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evol Comput 13(3):604–623CrossRefGoogle Scholar
  36. 36.
    Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110CrossRefGoogle Scholar
  37. 37.
    Ong YS, Lim M, Chen X (2010) Memetic computation-past, present and future [research frontier]. Comput Intell Mag IEEE 5(2):24–31CrossRefGoogle Scholar
  38. 38.
    Ong YS, Nair PB, Keane AJ (2003) Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J 41(4):687–696CrossRefGoogle Scholar
  39. 39.
    Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. Control Syst Mag IEEE 22(3):52–67MathSciNetCrossRefGoogle Scholar
  40. 40.
    Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer Verlag, BerlinGoogle Scholar
  41. 41.
    Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. Evol Comput IEEE Trans 12(1):64–79CrossRefGoogle Scholar
  42. 42.
    Repoussis PP, Tarantilis CD, Ioannou G (2009) Arc-guided evolutionary algorithm for the vehicle routing problem with time windows. Evol Comput IEEE Trans 13(3):624–647CrossRefGoogle Scholar
  43. 43.
    Richer JM, Goëffon A, Hao JK (2009) A memetic algorithm for phylogenetic reconstruction with maximum parsimony. Evolutionary computation, machine learning and data mining in bioinformatics, pp 164–175Google Scholar
  44. 44.
    Ruiz-Torrubiano R, Suárez A (2010) Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints. Comput Intell Mag IEEE 5(2):92–107CrossRefGoogle Scholar
  45. 45.
    Sharma Harish, Bansal Jagdish Chand, Arya KV (2013) Opposition based lévy flight artificial bee colony. Memet Comput 5(3):213–227CrossRefGoogle Scholar
  46. 46.
    Sharma Harish, Bansal Jagdish Chand, Arya KV (2013) Power law-based local search in differential evolution. Int J Comput Intell Stud 2(2):90–112CrossRefGoogle Scholar
  47. 47.
    Sharma H, Jadon SS, Bansal JC, Arya KV (2013) Lèvy flight based local search in differential evolution. In: Swarm, evolutionary, and memetic computing, pp 248–259. SpringerGoogle Scholar
  48. 48.
    Sharma TK, Pant M, Singh VP (2012) Improved local search in artificial bee colony using golden section search. arXiv preprint arXiv:1210.6128
  49. 49.
    Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. In: CEC 2005Google Scholar
  50. 50.
    Tan KC, Khor EF, Lee TH (2006) Multiobjective evolutionary algorithms and applications: algorithms and applications. Springer Science & Business MediaGoogle Scholar
  51. 51.
    Tang K, Mei Y, Yao X (2009) Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Trans Evol Comput 13(5):1151–1166CrossRefGoogle Scholar
  52. 52.
    Arit Thammano, Ajchara Phu-ang (2013) A hybrid artificial bee colony algorithm with local search for flexible job-shop scheduling problem. Procedia Comput Sci 20:96–101CrossRefGoogle Scholar
  53. 53.
    Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Evolutionary computation, 2004. CEC2004. Congress on, vol 2, pp 1980–1987, IEEEGoogle Scholar
  54. 54.
    Wang H, Wang D, Yang S (2009) A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Comput-Fusion Found Methodol Appl 13(8):763–780Google Scholar
  55. 55.
    Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a simple visual method to interpret data. Ann Intern Med 110(11):916CrossRefGoogle Scholar
  56. 56.
    Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shimpi Singh Jadon
    • 1
  • Jagdish Chand Bansal
    • 2
    Email author
  • Ritu Tiwari
    • 1
  • Harish Sharma
    • 3
  1. 1.ABV-Indian Institute of Information Technology and ManagementGwaliorIndia
  2. 2.South Asian UniversityNew DelhiIndia
  3. 3.Vardhaman Mahaveer Open UniversityKotaIndia

Personalised recommendations