Memetic Computing

, Volume 6, Issue 4, pp 263–276 | Cite as

Blind optimisation problem instance classification via enhanced universal similarity metric

  • Iván Contreras
  • Ignacio Arnaldo
  • Natalio Krasnogor
  • J. Ignacio Hidalgo
Regular research paper


The ultimate aim of Memetic Computing is the fully autonomous solution to complex optimisation problems. For a while now, the Memetic algorithms literature has been moving in the direction of ever increasing generalisation of optimisers initiated by seminal papers such as Krasnogor and Smith (IEEE Trans 9(5):474–488, 2005; Workshops Proceedings of the 2000 International Genetic and Evolutionary Computation Conference (GECCO2000), 2000), Krasnogor and Gustafson (Advances in nature-inspired computation: the PPSN VII Workshops 16(52), 2002) and followed by related and more recent work such as Ong and Keane (IEEE Trans Evol Comput 8(2):99–110, 2004), Ong et al. (IEEE Comp Int Mag 5(2):24–31, 2010), Burke et al. (Hyper-heuristics: an emerging direction in modern search technology, 2003). In this recent trend to ever greater generalisation and applicability, the research has focused on selecting (or even evolving), the right search operator(s) to use when tackling a given instance of a fixed problem type (e.g. Euclidean 2D TSP) within a range of optimisation frameworks (Krasnogor, Handbook of natural computation, Springer, Berlin/Heidelberg, 2009). This paper is the first step up the generalisation ladder, where one assumes that the optimiser is given (perhaps by other solvers who do not necessarily know how to deal with a given problem instance) a problem instance to tackle and it must autonomously and without human intervention pre-select which is the likely family class of problems the instance belongs to. In order to do that we propose an Automatic Problem Classifier System able to identify automatically which kind of instance or problem the system is dealing with. We test an innovative approach to the Universal Similarity Metric, as a variant of the normalised compression distance (NCD), to classify different problem instances. This version is based on the management of compression dictionaries. The results obtained are encouraging as we achieve a 96 % average classification success with the studied dataset.


Problem classification Second keyword Similarity matrix 



NK would like to acknowledge the EPSRC for funding Projects EP/J004111/1 and EP/H000968/. Iván Contreras and Ignacio Arnaldo are supported by Spanish Government Avanza Competitividad I + D + I: TSI-020100-2010-962 and Iyelmo INNPACTO-IPT-2011-1198-430000 Projects and the mobility Grant: Orden ECD /3628/2011, de 26 de diciembre, Dirección General de Política Universitaria, Ministerio de Educación, Cultura y Deportes.


  1. 1.
    Bailey M, Oberheide J, Andersen J, Mao ZM, Jahanian F, Nazario J (2007) Automated classification and analysis of internet malware. In: Proceedings of the 10th international conference on Recent advances in intrusion detection, Springer, Berlin, Heidelberg, RAID’07, pp 178–197.
  2. 2.
    Barthel D, Hirst JD, Blazewicz J, Burke EK, Krasnogor N (2007) Procksi: a decision support system for protein (structure) comparison, knowledge, similarity and information. BMC Bioinformatics 8:416. doi: 10.1186/1471-2105-8-416.
  3. 3.
    Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-Heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 57. Springer, US, pp 457-474. doi: 10.1007/0-306-48056-5_16
  4. 4.
    Captivo ME, Figueira J, Martins E, Santos JL (2003) Solving bicriteria 0–1 knapsack problems using a labeling algorithm. Comput Oper Res 30(12):1865–1886. doi: 10.1016/S0305-0548(02)00112-0.
  5. 5.
    Chaitin GJ (1975) A theory of program size formally identical to information theory. J ACM 22(3):329–340. doi: 10.1145/321892.321894 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chen X, Francia B, Li M, Mckinnon B, Seker A (2004) Shared information and program plagiarism detection. IEEE Trans Inf Ther 50:1545–1551CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    CHiPPS (2010) Yan Xu, Ted Ralphs, Laszlo Ladanyi, Matthew Saltzman.
  8. 8.
    Cilibrasi R, Vitnyi PMB (2005) Clustering by compression. IEEE Trans Inf Theor 51:1523–1545CrossRefzbMATHGoogle Scholar
  9. 9.
  10. 10.
    Compustat (1962)
  11. 11.
    CRSP (1960) Center for research in security prices.
  12. 12.
    Dawyndt P, De Meyer H, De Baets B (2005) The complete linkage clustering algorithm revisited. Soft Comput 9(5):385–392. doi: 10.1007/s00500-003-0346-3 CrossRefGoogle Scholar
  13. 13.
    Gheorghescu M (2005) An automated virus classification system. In: Virus Bulletin Conference, pp 294–300Google Scholar
  14. 14.
    Huffman DA (1952) A method for construction of minimum-redundancy codes. Proc Inst Radio Eng 40(9):1098–1101Google Scholar
  15. 15.
    Project-team of INRIA Lille Nord Europe D (2007) Paradiseo: a software framework for metaheuristics.
  16. 16.
    Johnson S (1967) Hierarchical clustering schemes. Psychometrika 32:241–254. doi: 10.1007/BF02289588 CrossRefGoogle Scholar
  17. 17.
    Kolmogorov AN (1965) Three approaches to the quantitative definition of information. Probl Inf Transm 1:1–7Google Scholar
  18. 18.
    Krasnogor N (2009) Handbook of natural computation. chap Memetic algorithms. Natural computing, Springer, Berlin/ Heidelberg.
  19. 19.
    Krasnogor N, Gustafson S (2002) Toward truly “memetic” memetic algorithms: discussion and proofs of concept. In: Proceedings of advances in nature-inspired computation: The Parallel Problem Solving from Nature VII Workshops 16(52)Google Scholar
  20. 20.
    Krasnogor N, Pelta DA (2004) Measuring the similarity of protein structures by means of the universal similarity metric. Bioinformatics 20(7):1015–1021. doi: 10.1093/bioinformatics/bth031.
  21. 21.
    Krasnogor N, Smith J (2000) Mafra: a java memetic algorithms framework. In: Workshops Proceedings of the 2000 International Genetic and Evolutionary Computation Conference (GECCO2000)Google Scholar
  22. 22.
    Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5):474–488. doi: 10.1109/TEVC.2005.850260
  23. 23.
    Li M, Vitanyi P (1997) An introduction to kolmogorov complexity and its applications. Preface to the first editionGoogle Scholar
  24. 24.
    Li M, Badger JH, Chen X, Kwong S, Kearney P, Zhang H (2001) An information-based sequence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics 17(2):149–154. doi: 10.1093/bioinformatics/17.2.149.
  25. 25.
    Gailly JL, Adler M (1992) Gzip.
  26. 26.
    MOCOlib (2010) Multiobjective combinatorial optimization problems.
  27. 27.
    Ong YS, Keane AJ (2004) Meta-lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110.
  28. 28.
    Ong YS, Lim MH, Chen X (2010) Memetic computation—past, present & future [research frontier]. IEEE Comp Int Mag 5(2):24–31.
  29. 29.
  30. 30.
    Siepmann P, Martin CP, Vancea I, Moriarty PJ, Krasnogor N (2007) A genetic algorithm approach to probing the evolution of self-organised nanostructured systems. Nano Lett 7(7):1985–1990. doi: 10.1021/nl070773m. (for the latest version please check the official journal site)
  31. 31.
    Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(1):53–65. doi: 10.1016/0377-0427(87)90125-7 CrossRefzbMATHGoogle Scholar
  32. 32.
    Cilibrasi R, Vitányi P, de Wolf R (2004) Algorithmic clustering of music based on string compression. Comput Music J 28(4):49–67Google Scholar
  33. 33.
    Terrazas G, Siepman P, Kendal G, Krasnogor N (2007) An evolutionary methodology for the automated design of cellular automaton-based complex systems. J Cell Autom 2(1):77–102. (for the latest version of this paper please refer to the journal website)
  34. 34.
  35. 35.
    VSLICAD (2000) Andrew B. Kahng, Igor Markov.
  36. 36.
    Woolley RAJ, Stirling J, Radocea A, Krasnogor N, Moriarty P (2011) Automated probe microscopy via evolutionary optimization at the atomic scale. Appl Phys Lett 98(25):253104.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Iván Contreras
    • 1
  • Ignacio Arnaldo
    • 1
  • Natalio Krasnogor
    • 2
  • J. Ignacio Hidalgo
    • 1
  1. 1.Paralell Architectures and Bioinspired Algorithms (PABA) Research GroupUniversidad Complutense de MadridMadridSpain
  2. 2.Neuroscience and Computing (BNC) Research GroupSchool of Computing Science, Newcastle UniversityNewcastle upon TyneUK

Personalised recommendations