Memetic Computing

, Volume 6, Issue 3, pp 149–155 | Cite as

On genetic logic circuits: forcing digital electronics standards?

  • Angel Goñi-MorenoEmail author
Regular research paper


Information processing is widely understood as the ability to change data in any meaningful manner. As such, this task is performed by natural systems as well as human-defined devices. The rational design of highly standardized electronic-based machines is a great source of inspiration for the synthetic biology community, which implements the same abstract concepts and theoretical functions with genetic technology in cells. For example, bacteria can be engineered to function as logic gates, adders or counters. However, the rules and concepts of electronic circuitry should not be literally translated into genetics. At least, not to the same extent in all cases. This issue needs to be addressed in order to establish a robust gene-based logic technology with its own specifications. This paper revise briefly the basics of genetic logic and, standing at the edge of biological and engineering sciences, tackles some recurrent misleading concepts and open questions


Logic circuit Bacteria Engineering Synthetic biology 



This work was supported by Spanish MINECO (PIM2010 EEI-00609), project PSEUDOMONAS 2.0: Utilización de células vivas en biocatálisis industrial.


  1. 1.
    Oldham P, Hall S, Burton G (2012) Synthetic biology: mapping the scientific landscape. PLoS One 7:e34368CrossRefGoogle Scholar
  2. 2.
    Heinemann M, Panke S (2006) Synthetic biology-putting engineering into biology. Bioinformatics 22:2790–9CrossRefGoogle Scholar
  3. 3.
    Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(2006):0028Google Scholar
  4. 4.
    De Lorenzo V, Danchin A (2008) Synthetic biology: discovering new worlds and new words. EMBO reports 9:822–827CrossRefGoogle Scholar
  5. 5.
    Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13:455–468CrossRefGoogle Scholar
  6. 6.
    Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508Google Scholar
  7. 7.
    Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224–230CrossRefGoogle Scholar
  8. 8.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in escherichia coli. Nature 403:339–342CrossRefGoogle Scholar
  9. 9.
    Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338CrossRefGoogle Scholar
  10. 10.
    Purcell O, Savery NJ, Grierson CS, di Bernardo M (2010) A comparative analysis of synthetic genetic oscillators. J R Soc Interface 7:1503–24CrossRefGoogle Scholar
  11. 11.
    Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotech 31:448–452CrossRefGoogle Scholar
  12. 12.
    Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340:599–603CrossRefGoogle Scholar
  13. 13.
    Lou C, Liu X, Ni M, Huang Y, Huang Q et al (2010) Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol 6Google Scholar
  14. 14.
    Friedland AE, Lu TK, Wang X, Shi D, Church G et al (2009) Synthetic gene networks that count. Science 324:1199–1202CrossRefGoogle Scholar
  15. 15.
    Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–9CrossRefGoogle Scholar
  16. 16.
    Maca J, Posas F, Sol RV (2012) Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol 30:342–349CrossRefGoogle Scholar
  17. 17.
    Goñi-Moreno A, Redondo-Nieto M, Arroyo F, Castellanos J (2011) Biocircuit design through engineering bacterial logic gates. Nat Comput 10:119–127CrossRefMathSciNetGoogle Scholar
  18. 18.
    Tamsir A, Tabor JJ, Ca Voigt (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ’wires’. Nature 469:212–5CrossRefGoogle Scholar
  19. 19.
    Regot S, Macia J, Conde N, Furukawa K, Kjellen J et al (2011) Distributed biological computation with multicellular engineered networks. Nature 469:207–211CrossRefGoogle Scholar
  20. 20.
    Goñi-Moreno A, Amos M, de la Cruz F (2013) Multicellular computing using conjugation for wiring. PLoS ONE 8:e65986CrossRefGoogle Scholar
  21. 21.
    Niazov T, Baron R, Katz E, Lioubashevski O, Willner I (2006) Concatenated logic gates using four coupled biocatalysts operating in series. Proc Natl Acad Sci 103:17160–17163CrossRefGoogle Scholar
  22. 22.
    Strack G, Pita M, Ornatska M, Katz E (2008) Boolean logic gates that use enzymes as input signals. ChemBioChem 9:1260–1266CrossRefGoogle Scholar
  23. 23.
    de Lorenzo V (2014) From the selfish gene to selfish metabolism: revisiting the central dogma. BioEssaysGoogle Scholar
  24. 24.
    Goñi-Moreno A, Amos M (2012) Continuous computation in engineered gene circuits. Biosystems 109:52–56CrossRefGoogle Scholar
  25. 25.
    Goñi-Moreno A, Amos M (2012) A reconfigurable nand/nor genetic logic gate. BMC Syst Biol 6:126CrossRefGoogle Scholar
  26. 26.
    Daniel R, Rubens JR, Sarpeshkar R, Lu TK (2013) Synthetic analog computation in living cells. Nature 497:619–623CrossRefGoogle Scholar
  27. 27.
    Kelly J, Rubin A, Davis J, Ajo-Franklin C, Cumbers J et al (2009) Measuring the activity of biobrick promoters using an in vivo reference standard. J Biol Eng 3:4CrossRefGoogle Scholar
  28. 28.
    Garg A, Lohmueller JJ, Silver PA, Armel TZ (2012) Engineering synthetic tal effectors with orthogonal target sites. Nucl Acids Res 40:7584–7595CrossRefGoogle Scholar
  29. 29.
    Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS ONE 7:e33279CrossRefGoogle Scholar
  30. 30.
    Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491:249–253CrossRefGoogle Scholar
  31. 31.
    Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci USA 102:3581–3586CrossRefGoogle Scholar
  32. 32.
    Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L (2006) Noise in transcription negative feedback loops: simulation and experimental analysis. Mol Syst Biol 2Google Scholar
  33. 33.
    Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–64CrossRefGoogle Scholar
  34. 34.
    Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814CrossRefGoogle Scholar
  35. 35.
    Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173CrossRefGoogle Scholar
  36. 36.
    Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134CrossRefGoogle Scholar
  37. 37.
    Goi-Moreno A, Amos M (2011) Model for a population-based microbial oscillator. Biosystems 105:286–294CrossRefGoogle Scholar
  38. 38.
    Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Micro 10:191–202CrossRefGoogle Scholar
  39. 39.
    Beal J, Lu T, Weiss R (2011) Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks. PLoS ONE 6:e22490CrossRefGoogle Scholar
  40. 40.
    Beal J, Weiss R, Densmore D, Adler A, Appleton E et al (2012) An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Syn Biol 1:317–331CrossRefGoogle Scholar
  41. 41.
    Kratz A, Tomita M, Krishnan A (2008) GeNESiS: gene network evolution simulation software. BMC Bioinf 9:541Google Scholar
  42. 42.
    Crespo I, Krishna A, Le Bchec A, del Sol A (2013) Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states. Nucl Acids Res 41:e8CrossRefGoogle Scholar
  43. 43.
    Thomas S, Jin Y (2014) Reconstructing biological gene regulatory networks: where optimization meets big data. Evol Intel 7:29–47CrossRefGoogle Scholar
  44. 44.
    Xu R, Wunsch D, Frank R (2007) Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Trans Computat Biol Bioinf 4:681–692CrossRefGoogle Scholar
  45. 45.
    Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95–107CrossRefGoogle Scholar
  46. 46.
    Auslander S, Auslander D, Muller M, Wieland M, Fussenegger M (2012) Programmable single-cell mammalian biocomputers. Nat Adv 123–127 (online publication)Google Scholar
  47. 47.
    Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35Google Scholar
  48. 48.
    Merulla D, Buffi N, Beggah S, Truffer F, Geiser M et al (2013) Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr Opin Biotechnol 24:534–541 Google Scholar
  49. 49.
    Cho MK, Relman DA (2010) Synthetic life, ethics, national security, and public discourse. Science 329:38–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Systems Biology ProgramCentro Nacional de Biotecnología, CSICMadrid-CantoblancoSpain

Personalised recommendations