Memetic Computing

, Volume 6, Issue 1, pp 31–47 | Cite as

Spider Monkey Optimization algorithm for numerical optimization

  • Jagdish Chand BansalEmail author
  • Harish Sharma
  • Shimpi Singh Jadon
  • Maurice Clerc
Regular research paper


Swarm intelligence is one of the most promising area for the researchers in the field of numerical optimization. Researchers have developed many algorithms by simulating the swarming behavior of various creatures like ants, honey bees, fish, birds and the findings are very motivating. In this paper, a new approach for numerical optimization is proposed by modeling the foraging behavior of spider monkeys. Spider monkeys have been categorized as fission–fusion social structure based animals. The animals which follow fission–fusion social systems, split themselves from large to smaller groups and vice-versa based on the scarcity or availability of food. The proposed swarm intelligence approach is named as Spider Monkey Optimization (SMO) algorithm and can broadly be classified as an algorithm inspired by intelligent foraging behavior of fission–fusion social structure based animals.


Swarm intelligence based algorithm  Optimization Fission–fusion social system  Spider monkey optimization 



The authors acknowledge the anonymous reviewers for their valuable comments and suggestions.


  1. 1.
    Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4):635–672CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Angeline P (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Evolutionary programming VII. Springer, Berlin, pp 601–610Google Scholar
  3. 3.
    Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New YorkzbMATHGoogle Scholar
  4. 4.
    Clerc M (2012) A method to improve standard PSO. Retrieved on Jan 2012
  5. 5.
    De Castro LN, Von Zuben FJ (1999) Artificial immune systems: Part I-basic theory and applications. Universidade Estadual de Campinas, Dezembro de, Tech. RepGoogle Scholar
  6. 6.
    Thakur M. Deep K (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895911Google Scholar
  7. 7.
    Dorigo M, Stützle T (2004) Ant colony optimization. The MIT Press, CambridgeCrossRefzbMATHGoogle Scholar
  8. 8.
    Gamperle R, Muller SD, Koumoutsakos A (2002) A parameter study for differential evolution. Adv Intell Syst Fuzzy Syst Evol Comput 10:293–298Google Scholar
  9. 9.
    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional, Upper Saddle RiverzbMATHGoogle Scholar
  10. 10.
    Hansen N (2006) The cma evolution strategy: a comparing review. In: Towards a new evolutionary computation. Springer, Heidelberg, pp 75–102Google Scholar
  11. 11.
    Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE international conference on evolutionary computation, pp 312–317. IEEEGoogle Scholar
  12. 12.
    Hofmann K, Whiteson S, de Rijke M (2011) Balancing exploration and exploitation in learning to rank online. Adv Inform Retr 5:251–263CrossRefGoogle Scholar
  13. 13.
    Jeanne RL (1986) The evolution of the organization of work in social insects. Monitore Zoologico Italiano 20(2):119–133Google Scholar
  14. 14.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06. Erciyes University Press, ErciyesGoogle Scholar
  15. 15.
    Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Karaboga D, Akay B (2011) A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl Soft Comput 11(3):3021–3031CrossRefGoogle Scholar
  17. 17.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, 1995, vol 4, pp 1942–1948. IEEEGoogle Scholar
  18. 18.
    Lampinen J, Zelinka I (2000) On stagnation of the differential evolution algorithm. In: Proceedings of MENDEL, Citeseer, pp 76–83Google Scholar
  19. 19.
    Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Annals Math Stat 18(1):50–60CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Mezura-Montes E, Velázquez-Reyes J, Coello CA (2006) A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM Press, New York, pp 485– 492Google Scholar
  21. 21.
    Milano M, Koumoutsakos P, Schmidhuber J (2004) Self-organizing nets for optimization. IEEE Trans Neural Netw 15(3):758–765Google Scholar
  22. 22.
    Milton K (1993) Diet and social organization of a free-ranging spider monkey population: the development of species-typical behavior in the absence of adults. In: Juvenile primates: life history, development, and behavior. Oxford University Press, Oxford, pp 173–181 Google Scholar
  23. 23.
    Norconk MA, Kinzey WG (1994) Challenge of neotropical frugivory: travel patterns of spider monkeys and bearded sakis. Am J Primatol 34(2):171–183CrossRefGoogle Scholar
  24. 24.
    Oster GF, Wilson EO (1979) Caste and ecology in the social insects. Princeton Univ ersity Press, PrincetonGoogle Scholar
  25. 25.
    Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67CrossRefMathSciNetGoogle Scholar
  26. 26.
    Passino KM (2010) Bacterial foraging optimization. Int J Swarm Intell Res (IJSIR) 1(1):1–16CrossRefGoogle Scholar
  27. 27.
    Price KV (1996) Differential evolution: a fast and simple numerical optimizer. In: Fuzzy information processing society, 1996. NAFIPS. 1996 Biennial conference of the North American, pp 524–527. IEEEGoogle Scholar
  28. 28.
    Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer, BerlinGoogle Scholar
  29. 29.
    Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79CrossRefGoogle Scholar
  30. 30.
    Ramos-Fernandez G (2001) Patterns of association, feeding competition and vocal communication in spider monkeys, Ateles geoffroyi. Dissertations, University of Pennsylvania. 1 Jan 2001
  31. 31.
    Sartore J (2011) Spider monkey images. Retrived on 21 Decmber 2011
  32. 32.
    Sharma H, Bansal JC, Arya KV (2012) Opposition based lévy flight artificial bee colony. Memet Comput 5(3):213–227Google Scholar
  33. 33.
    Shi Y, Eberhart R (1998) Parameter selection in particle swarm optimization. In: Evolutionary programming VII. Springer, Heidelberg, pp 591–600Google Scholar
  34. 34.
    Simmen B, Sabatier D (1996) Diets of some french guianan primates: food composition and food choices. Int J Primatol 17(5):661–693CrossRefGoogle Scholar
  35. 35.
    Storn R, Price K (1997) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. J Global Optim 11:341–359Google Scholar
  36. 36.
    Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL ReportGoogle Scholar
  37. 37.
    Symington MMF (1990) Fission–fusion social organization inateles andpan. Int J Primatol 11(1):47–61CrossRefGoogle Scholar
  38. 38.
    van Roosmalen MGM (1985) Instituto Nacional de Pesquisas da Amazônia. Habitat preferences, diet, feeding strategy and social organization of the black spider monkey (ateles paniscus paniscus linnaeus 1758) in surinam. Wageningen : RoosmalenGoogle Scholar
  39. 39.
    Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress on evolutionary computation, 2004. CEC2004., vol 2, pp 1980–1987. IEEEGoogle Scholar
  40. 40.
    Weise T, Chiong R, Tang K (2012) Evolutionary optimization: pitfalls and booby traps. J Comput Sci Technol 27(5):907–936CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a simple visual method to interpret data. Annals Intern Med 110(11):916CrossRefGoogle Scholar
  42. 42.
    Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Computat 217(7):3166–3173CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jagdish Chand Bansal
    • 1
    • 2
    Email author
  • Harish Sharma
    • 2
  • Shimpi Singh Jadon
    • 1
  • Maurice Clerc
    • 3
  1. 1.ABV-Indian Institute of Information Technology and ManagementGwaliorIndia
  2. 2.South AsianUniversityNew Delhi India
  3. 3.Independent Consultant in Optimization GroisyFrance

Personalised recommendations