Memetic Computing

, Volume 5, Issue 1, pp 35–48 | Cite as

Automated self-organising vehicles for Barclays Cycle Hire

  • Lin Li
  • Francois McDonald
Regular Research Paper


Self-organisation is a distributed and asynchronous process in which global pattern or behaviour emerge from local components of the system. Neither central control nor external intervention is necessary during this process. Self-organising systems are adaptive and robust, which are appealing properties from a design and engineering point of view. In this paper, we present an innovative self-organisation approach for a dynamic vehicle routing problem, the Barclay Cycle Hire truck dispatch. In addition, we introduce an evolutionary algorithm capable of automatically configuring the “self-organising trucks”. Experimental results show the evolutionary algorithm improves the overall fitness of the self-organising trucks; and we observe global emergent behaviour in the way trucks self-organise.


Self-organisation Vehicle routing problem Evolutionary design Genetic algorithm 


  1. 1.
    Krasnogor N, Gustafson S, Pelta D, Verdegay J (eds) (2008) Systems self-assembly: multidisciplinary snapshots, vol 5. Studies in Multidisciplinarity. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Hogg T (1999) Robust self-assembly using highly designable structures. Nanotechnology 10(3):300CrossRefGoogle Scholar
  3. 3.
    Li L, Garibaldi J, Krasnogor N (2006) Automated self-assembly programming paradigm: initial investigation. In: Proceedings of the third IEEE international workshop on engineering of autonomic and autonomous systems, EASe 2006, pp 25–36, IEEE (ISBN 0-7695-2544-X)Google Scholar
  4. 4.
    Li L, Krasnogor N, Garibaldi J (2006) Automated self-assembly programming paradigm: a particle swarm realization. In: Krasnogor N, Pelta D (eds) Proceedings of the workshop on nature inspired cooperative strategies for optimisation, University of GranadaGoogle Scholar
  5. 5.
    Li L, Garibaldi J, Krasnogor N (2009) Automated self-assembly programming paradigm: the impact of network topology. Int J Intel Syst (IJIS) 24(7):793–817 (special issue on nature inspired cooperative strategies for optimisation)zbMATHCrossRefGoogle Scholar
  6. 6.
    Levinson R, Helman DR, Oswalt E (1988) Intelligent signal analysis and recognition using a self-organizing database. IEA/AIE 2(88):1116–1130CrossRefGoogle Scholar
  7. 7.
    Siepmann P, Martin C, Vancea I, Moriarty P, Krasnogor N (2007) A genetic algorithm approach to probing the evolution of self-organised nanostructured systems. Nano Lett 7(7):1985–1990CrossRefGoogle Scholar
  8. 8.
    Romero-Campero FJ, Twycross J, Camara M, Bennett M, Gheorghe M, Krasnogor N (2009) Modular assembly of cell systems biology models using p systems. Int J Found Comput Sci 20(3):427–442MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Krasnogor N (2004) Self-generating metaheuristics in bioinformatics: the protein structure comparison case. Genet Program Evol Mach 5(2):181–201CrossRefGoogle Scholar
  10. 10.
    Sartiani C, Manghi P, Ghelli G, Conforti G (2005) Xpeer : a self-organizing xml p2p database system. In: Lindner W, Mesiti M, Trker C, Tzitzikas Y, Vakali A (eds) Current trends in database technology—EDBT 2004 workshops, vol 3268. Lecture Notes in Computer Science, Springer, Berlin, pp 429–432Google Scholar
  11. 11.
    Terrazas G, Krasnogor N, Kendall G, Gheorghe M (2005) Automated tile design for self-assembly conformations. In: IEEE congress on evolutionary computation, vol 2. CEC, IEEE, September 2005, pp 1808–1814Google Scholar
  12. 12.
    Terrazas G, Gheorghe M, Kendall G, Krasnogor N (2007) Evolving tiles for automated self-assembly design. In: Proceedings for the 2007 IEEE congress on evolutionary computation, IEEE, pp 2001–2008Google Scholar
  13. 13.
    Terrazas G, Krasnogor N (2012) A genotype-phenotype-fitness assessment protocol for evolutionary self-assembly wang tiles design. J Memet Comput. doi: 10.1007/s12293-012-0092-0
  14. 14.
    Terrazas G, Siepmann P, Kendall G, Krasnogor N (2007) An evolutionary methodology for the automated design of cellular automaton-based complex systems. J Cell Autom 2(1):77–102Google Scholar
  15. 15.
    Brandao Oliveira H, Vasconcelos G (2010) A hybrid search method for the vehicle routing problem with time windows. Ann Oper Res 180:125–144 Google Scholar
  16. 16.
    Chiang W-C, Russell R (1996) Simulated annealing metaheuristics for the vehicle routing problem with time windows. Ann Oper Res 63:3–27Google Scholar
  17. 17.
    Bell JE, McMullen PR (2004) Ant colony optimization techniques for the vehicle routing problem. Adv Eng Inf 18(1):41–48CrossRefGoogle Scholar
  18. 18.
    Cordeau JF, Laporte G, Hautes École, Commerciales Études, Gerad LCD (2001) A unified tabu search heuristic for vehicle routing problems with time windows. J Oper Res Soc 52:928–936zbMATHCrossRefGoogle Scholar
  19. 19.
    Pacheco J, Martí R (2006) Tabu search for a multi-objective routing problem. J Oper Res Soc 57(1):29–37zbMATHCrossRefGoogle Scholar
  20. 20.
    Chen X (2012) An algorithm development environment for problem-solving: software review. Memet Comput 4(2):149–161CrossRefGoogle Scholar
  21. 21.
    Ong Y-S, Lim M-H, Chen X (2010) Memetic computation—past, present and future [research frontier]. IEEE Comp Int Mag 5(2):24–31CrossRefGoogle Scholar
  22. 22.
    Goldbarg M, Asconavieta P, Goldbarg E (2012) Memetic algorithm for the traveling car renter problem: an experimental investigation. Memet Comput 4:89–108CrossRefGoogle Scholar
  23. 23.
    Lewis T (2011) Has London’s cycle hire scheme been a capital idea?.
  24. 24.
    TfL (2011) Barclays cycle hire expansion.
  25. 25.
    (2010) London cycle hire: good, but not great.
  26. 26.
    Wagner A (2005) Robustness and evolvability in living systems (Princeton Studies in Complexity). Princeton University Press, PrincetonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Stage Intelligence LtdLondonUK

Personalised recommendations