Memetic Computing

, Volume 4, Issue 2, pp 149–161 | Cite as

An algorithm development environment for problem-solving: software review

Software Review

Abstract

Algorithm Development Environment for Problem Solving (ADEP) is a development platform catering to the needs of designing and exploring computationally viable configurations of metaheuristic algorithms. It is motivated by the lack of tools capable of capitalizing on the richness of memetic computing techniques that surfaced in recent years. This software review article introduces the functional features of ADEP and describes the the various utility modules within the ADEP metaheuristics framework, in particular the LVRP tree data structure, configuration and simulation visualization, and the automated configuration via the problem-driven learning engine.

Keywords

Memetic algorithm Metaheuristics Algorithms design Automated algorithms configuration Combinatorial optimization Continuous optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey of memetic computing. IEEE Trans Evol Comput 15(5): 591–607CrossRefGoogle Scholar
  2. 2.
    Lim MH, Krasnogor N, Ong YS, Gustafson S (2012) Editorial, Memetic Comput 4:1Google Scholar
  3. 3.
    Lim MH, Gustafson S, Krasnogor N, Ong YS (2009) Editorial. Memetic Comput 1(3): 173–174CrossRefGoogle Scholar
  4. 4.
    Voudouris C, Dorne R, Lesaint D, Liret A (2001) iopt: A software toolkit for heuristic search methods. In: CP01, Paphos, pp 716–729. Springer, BerlinGoogle Scholar
  5. 5.
    Gaspero LD, Schaerf A (2000) Easylocal++: An object-oriented framework for flexible design of local search algorithms. Softw Practice Experience 33(8): 733–765CrossRefGoogle Scholar
  6. 6.
    Fink A, Voβ S (2002) Hotframe: a heuristic optimization framework. Optimization Software Class Libraries, OR/CS Interfaces Series. Kluwer Academic Publishers, Boston, pp 81–154Google Scholar
  7. 7.
    Jones M, McKeown G, Rayward-Smith V (1998) Templar: An object-oriented framework for distributed combinatorial optimzation. In: Proceedings of the UNICOM Seminar on Modern Heuristics for Decision Support. UNICOM Ltd, Brunei University, UKGoogle Scholar
  8. 8.
    Schaerf A, Lenzerini M, Cadoli M (Jul 1999) Local++: a C++ framework for local search algorithms. In: Proceedings of technology of object-oriented languages and systems, pp 152–161Google Scholar
  9. 9.
    Andreatta AA, Carvalho SER, Ribeiro CC (1998) An object-oriented framework for local search heuristics. In: Proceedings of the technology of object-oriented languages and systems (TOOLS ’98). IEEE Computer Society, Washington, DC, pp 33Google Scholar
  10. 10.
    Shaw P, Backer BD, Furnon V (2002) Improved local search for CP toolkits. Ann Oper Res 115(1):31–50Google Scholar
  11. 11.
    Collet P, Lutton E, Schoenauer M, Louchet J (Sept 2000) Take it EASEA. In: Lecture notes in computer science, vol 1917 archive. Proceedings of the 6th international conference on parallel problem solvingGoogle Scholar
  12. 12.
    Veenhuis C, Franke K, Koppen M (2000) A semantic model for evolutionary computation. In: Proceedings of 6th international conference on soft computingGoogle Scholar
  13. 13.
    Wall M (1996) GAlib: A C++ library of genetic algorithm components. Mechanical Engineering Department. Massachusetts Institute of TechnologyGoogle Scholar
  14. 14.
    Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolving objects: a general purpose evolutionary computation library. In: EA-01, evolution artificielle, 5th international conference in evolutionary algorithms, pp 231–244Google Scholar
  15. 15.
    HEEDS (2002) Hierarchical Evolutionary Engineering Design System. Getting Started ManualGoogle Scholar
  16. 16.
    Lassila O (1996) Ozone temporal constraint propagator. Technical Report CMU-RI-TR-96-12, Robotics Institute, PittsburghGoogle Scholar
  17. 17.
    Birattari M, Stutzle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Proceedings of the genetic and evolutionary computation conference, pp 11–18. Morgan Kaufmann, San FransiscoGoogle Scholar
  18. 18.
    Stanley KO, Bryant BD, Miikkulainen R (2005) Real-time neuroevolution in the nero video game. IEEE Trans Evol Comput 9(6): 653–668CrossRefGoogle Scholar
  19. 19.
    Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. complex adaptive systems. The MIT Press, CambridgeGoogle Scholar
  20. 20.
    Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Handbook of metaheuristics, International series in operations research & management science, Chap. 16, pp 457–474Google Scholar
  21. 21.
    Ong YS, Keane AJ (2004) Meta-lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2): 99–110CrossRefGoogle Scholar
  22. 22.
    Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B 36(1): 141–152CrossRefGoogle Scholar
  23. 23.
    Nguyen QH, Ong YS, Lim MH (2008) Non-genetic transmission of memes by diffusion. In: GECCO’08: proceedings of the 10th annual conference on genetic and evolutionary computation, pp 1017–1024. ACM, New YorkGoogle Scholar
  24. 24.
    Dawkins R (1989) The selfish gene. Clarendon Press, OxfordGoogle Scholar
  25. 25.
    Krasnogor N, Smith J (2001) Emergence of protable search strategies based on a simple inheritance mechanism. In: The genetic and evolutionary computation conference, pp 432–439. San FranciscoGoogle Scholar
  26. 26.
    Smith J (2002) Co-evolving memetic algorithms: initial investigations. In: Parallel problem solving from nature—PPSN VII, pp 537–548Google Scholar
  27. 27.
    Krasnogor N (1999) Co-evolution of genes and memes in memetic algorithms. In: Proceedings of the 1999 genetic and evolutionary computation conference workshop program, p 371Google Scholar
  28. 28.
    Krasnogor N, Gustafson S (2002) Toward truly ”‘memetic”’ memetic algorithms: discussion and proof of concepts. In: Advances in nature-inspired computation: the PPSN VII workshops, pp 21–22Google Scholar
  29. 29.
    Krasnogor N, Gustafson S (2004) A study on the use of “self-generation” in memetic algorithms. Nat Comput 3(1): 53–76MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Lim KK, Ong YS, Lim MH, Chen XS, Agarwal A (Nov 2007) Hybrid Ant colony algorithm for path planning in Sparse graphs. Soft Comput J 981–994Google Scholar
  31. 31.
    Agarwal A, Xu YL, Lim MH (2003) Graph compression via compaction of degree-2 nodes for urav visitation sequencing. Unmanned Vehicle System TechnologiesGoogle Scholar
  32. 32.
    Tang J, Lim MH, Ong YS (2007) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput J 11(9): 873–888CrossRefGoogle Scholar
  33. 33.
    Tang J, Lim MH, Ong YS (2006) Parallel memetic algorithm with selective local search for large scale quadratic assignment problems. Int J Innov Comput Inf Control 2(6): 1399–1416Google Scholar
  34. 34.
    Tang J, Lim MH, Ong YS (2006) Adaptation for parallel memetic algorithm based on population entropy. In: Proceedings of the 8th annual conference on genetic and evolutionary computation (GECCO), Seattle, Washington, pp 575–582 (Best paper Award Nomination)Google Scholar
  35. 35.
    Burkard RE, Karisch SE, Rendl F (1997) QAPLIB—a quadratic assignment problem library. J Glob Optim 10(4): 391–403MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Intelligent Systems CentreSingaporeSingapore

Personalised recommendations