Memetic Computing

, Volume 4, Issue 1, pp 33–47 | Cite as

Divide-and-conquer memetic algorithm for online multi-objective test paper generation

  • Minh Luan Nguyen
  • Siu Cheung Hui
  • Alvis C. M. Fong
Regular Research Paper


Online test paper generation (Online-TPG) generates a test paper automatically online according to user specification based on multiple assessment criteria, and the generated test paper can then be attempted online by user. Online-TPG is challenging as it is a multi-objective optimization problem that is NP-hard, and it is also required to satisfy the online generation requirement. In this paper, we propose an efficient multi-objective optimization approach based on the divide-and-conquer memetic algorithm (DAC-MA) for Online-TPG. Instead of solving the multi-objective constraints simultaneously, the set of constraints is divided into two subsets of relevant constraints, which can then be solved separately and effectively by evolutionary computation and local search of DAC-MA. The empirical performance results have shown that the proposed approach has outperformed other TPG techniques in terms of runtime efficiency and paper quality.


Memetic algorithms Constraint satisfaction Multi-objective optimization Dimensionality reduction Online test paper generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Back T, Fogel DB, Michalewicz Z (1999) Evolutionary computation 1: basic algorithms and operators. IOP Publishing Ltd., UKGoogle Scholar
  2. 2.
    Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method for points and rectangles. ACM SIGMOD Record 19(2): 322–331CrossRefGoogle Scholar
  3. 3.
    Bodin L, Golden B, Assad A, Ball M (1983) Routing and scheduling of vehicles and crews: the state of the art. Comput Oper Res 10(2): 63–211MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bosman PAN, de Jong ED (2006) Combining gradient techniques for numerical multi-objective evolutionary optimization. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, ACM, pp 627–634Google Scholar
  5. 5.
    Caponio A, Neri F (2009) Integrating cross-dominance adaptation in multi-objective memetic algorithms. In: Goh CK, Ong YS, Tan KC (eds) Multi-objective memetic algorithms, vol 171. Springer, New York, pp 325–351Google Scholar
  6. 6.
    Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607Google Scholar
  7. 7.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd Edn. McGraw-Hill Science, New York, pp 127–144MATHGoogle Scholar
  8. 8.
    Das A, Kempe D (2011) Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: International conference on machine learning ICMLGoogle Scholar
  9. 9.
    de Bruijn NG (1964) Polya’s theory of counting. In: Beckenbach EF, Polya G (eds) Applied combinatorial mathematics. Wiley, New York, pp 144–184Google Scholar
  10. 10.
    Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New YorkMATHGoogle Scholar
  11. 11.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2): 182–197CrossRefGoogle Scholar
  12. 12.
    Goh CK, Ong YS, Tan KC (2009) Multi-objective memetic algorithms, vol 171. Springer, New YorkGoogle Scholar
  13. 13.
    Ho TF, Yin PY, Hwang GJ, Shyu SJ, Yean YN (2008) Multi-objective parallel test-sheet composition using enhanced particle swarm optimization. J ETS 12(4): 193–206Google Scholar
  14. 14.
    Hu XM, Zhang J, Chung HSH, Liu O, Xiao J (2009) An intelligent testing system embedded with an ant-colony-optimization-based test composition method. IEEE Trans Syst Man Cybern 39(6): 659–669CrossRefGoogle Scholar
  15. 15.
    Hwang GJ (2003) A test-sheet-generating algorithm for multiple assessment requirements. IEEE Trans Educ 46(3): 329–337CrossRefGoogle Scholar
  16. 16.
    Hwang GJ, Chu HC, Yin PY, Lin JY (2008) An innovative parallel test sheet composition approach to meet multiple assessment criteria for national tests. Comput Educ 51(3): 1058–1072CrossRefGoogle Scholar
  17. 17.
    Hwang GJ, Lin B, Tseng HH, Lin TL (2005) On the development of a computer-assisted testing system with genetic test sheet-generating approach. IEEE Trans Syst Man Cybern 35(4): 590–594CrossRefGoogle Scholar
  18. 18.
    Hwang GJ, Yin PY, Yeh SH (2006) A tabu search approach to generating test sheets for multiple assessment criteria. IEEE Trans Educ 49(1): 88–97CrossRefGoogle Scholar
  19. 19.
    Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: IEEE world congress on evolutionary computation, IEEE, pp 2419–2426Google Scholar
  20. 20.
    Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2): 204–223CrossRefGoogle Scholar
  21. 21.
    Knowles J, Corne D (2005) Memetic algorithms for multiobjective optimization: issues, methods and prospects. In: Recent advances in memetic algorithms. Springer, Berlin, pp 313–352Google Scholar
  22. 22.
    Knowles J, Corne D, Deb K (2008) Multiobjective problem solving from nature: from concepts to applications. Springer, BerlinMATHCrossRefGoogle Scholar
  23. 23.
    Kullback S (1997) Information theory and statistics. Dover Publisher, New YorkMATHGoogle Scholar
  24. 24.
    Kung HT, Luccio F, Preparata FP (1975) On finding the maxima of a set of vectors. J ACM 22(4): 469–476MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lee CL, Huang CH, Li CJ (2007) Test-sheet composition using immune algorithm for e-learning application. New Trends Appl Artif Intell 4570: 823–833CrossRefGoogle Scholar
  26. 26.
    Manolopoulos Y, Nanopoulos A, Theodoridis Y (2006) R-trees: theory and applications. Springer, BerlinMATHCrossRefGoogle Scholar
  27. 27.
    Mei Y, Tang K, Yao X (2011) Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans Evol Comput 15(2): 151–165CrossRefGoogle Scholar
  28. 28.
    Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report, 826Google Scholar
  29. 29.
    Nguyen ML, Hui SC, Fong ACM (2011) An efficient multi-objective optimization approach for online test paper generation. In: IEEE symposium on computational intelligence in multicriteria decision-making (MDCM), pp 182–189Google Scholar
  30. 30.
    Ong YS, Keane AJ (2004) Meta-lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2): 99–110CrossRefGoogle Scholar
  31. 31.
    Ong YS, Lim M, Chen X (2010) Research frontier: memetic computation—past, present & future. IEEE Comput Intell Mag 5(2): 24–31CrossRefGoogle Scholar
  32. 32.
    Orlin JB, Punnen AP, Schulz AS (2004) Approximate local search in combinatorial optimization. In: Proceedings of ACM-SIAM SODA, pp 587–596Google Scholar
  33. 33.
    Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proceedings of the ACM SIGMOD, pp 71–79Google Scholar
  34. 34.
    Rui WF, Hong WW, Ke PQ, Chao ZF, Liang JJ (2009) A novel online test-sheet composition approach for web-based testing. In: Symposium on IT in medicine & education, pp 700–705Google Scholar
  35. 35.
    Schaerf A (1999) A survey of automated timetabling. In: Artificial intelligence review, vol 13, issue 2. Springer, Berlin, pp 87–127Google Scholar
  36. 36.
    Schrijver A (1986) Theory of linear and integer programming. Wiley, New YorkMATHGoogle Scholar
  37. 37.
    Schutze O, Lara A, Coello CAC (2011) On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans Evol Comput 15(4): 444–455CrossRefGoogle Scholar
  38. 38.
    Tsai KH, Wang TI, Hsieh TC, Chiu TK, Lee MC (2009) Dynamic computerized testlet-based test generation system by discrete pso with partial course ontology. Expert Syst Appl 37(1): 774–786CrossRefGoogle Scholar
  39. 39.
    Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 292–301Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Minh Luan Nguyen
    • 1
  • Siu Cheung Hui
    • 1
  • Alvis C. M. Fong
    • 2
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computing and Math SciencesAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations