Memetic Computing

, Volume 3, Issue 4, pp 245–259 | Cite as

A social approach for target localization: simulation and implementation in the marXbot robot

  • Héctor F. Satizábal
  • Andres Upegui
  • Andres Perez-Uribe
  • Philippe Rétornaz
  • Francesco Mondada
Regular Research Paper


Foraging is a common benchmark problem in collective robotics in which a robot (the forager) explores a given environment while collecting items for further deposition at specific locations. A typical real-world application of foraging is garbage collection where robots collect garbage for further disposal in pre-defined locations. This work proposes a method to cooperatively perform the task of finding such locations: instead of using local or global localization strategies relying on pre-installed infrastructure, the proposed approach takes advantage of the knowledge gathered by a population about the localization of the targets. In our approach, robots communicate in an intrinsic way the estimation about how near they are from a target; these estimations are used by neighbour robots for estimating their proximity, and for guiding the navigation of the whole population when looking for these specific areas. We performed several tests in a simulator, and we validated our approach on a population of real robots. For the validation tests we used a mobile robot called marXbot. In both cases (i.e., simulation and implementation on real robots), we found that the proposed approach efficiently guides the robots towards the pre-specified targets while allowing the modulation of their speed.


Collective robotics Target localization Foraging marXbot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin RC (1992) Cooperation without communication: multiagent schema-based robot navigation. J Robot Syst 9(3): 351–364CrossRefGoogle Scholar
  2. 2.
    Arkin, RC, Bekey, GA (eds) (1997) Robot colonies. Kluwer, NorwellzbMATHGoogle Scholar
  3. 3.
    Balch T, Arkin RC (1994) Communication in reactive multiagent robotic systems. Auton Robots 1(1): 27–52CrossRefGoogle Scholar
  4. 4.
    Bekey GA (2005) Autonomous robots: from biological inspiration to implementation and control (Intelligent Robotics and Autonomous Agents). The MIT Press, CambridgeGoogle Scholar
  5. 5.
    Bencina R, Kaltenbrunner M, Jorda S (2005) Improved topological fiducial tracking in the reactivision system. In: IEEE computer society conference on computer vision and pattern recognition-workshops, 2005. CVPR workshops. IEEE, p 99Google Scholar
  6. 6.
    Bonani M, Baaboura T, Retornaz P, Vaussard F, Magnenat S, Burnier D, Longchamp V, Mondada F (2009) The marxbot—a modular all-terrain experimentation robot.
  7. 7.
    Bonani M, Longchamp V, Magnenat S, Rtornaz P, Burnier D, Roulet G, Vaussard F, Bleuler H, Mondada F (2010) The MarXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010).
  8. 8.
    Braitenberg V (1984) Vehicles: experiments in synthetic psychology. The MIT Press, CambridgeGoogle Scholar
  9. 9.
    Camazine S, Crailsheim K, Hrassnigg N, Robinson GE, Leonhard B, Kropiunigg H (1998) Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie 29(1–2): 113–126CrossRefGoogle Scholar
  10. 10.
    Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, PrincetonGoogle Scholar
  11. 11.
    Campo A, Gutiérrez A, Nouyan S, Pinciroli C, Longchamp V, Garnier S, Dorigo M (2010) Artificial pheromone for path selection by a foraging swarm of robots. Biol Cybernet 103: 339–352. doi: 10.1007/s00422-010-0402-x CrossRefGoogle Scholar
  12. 12.
    Deneubourg JL, Goss S (1989) Collective patterns and decision making. Ethol Ecol Evol 1: 295–311CrossRefGoogle Scholar
  13. 13.
    Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories, methods, and technologies. The MIT Press, CambridgeGoogle Scholar
  14. 14.
    Gadagkar R (1997) Survival strategies: cooperation and conflict in animal societies. Harvard University Press, USAGoogle Scholar
  15. 15.
    Ijspeert A, Martinoli A, Billard A, Gambardella LM (2001) Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Auton Robots 11(2): 149–171zbMATHCrossRefGoogle Scholar
  16. 16.
    Kuniyoshi Y, Kita N, Rougeaux S, Sakane S, Ishii M, Kakikua M (1994) Cooperation by observation: the framework and basic task patterns. In: IEEE international conference on robotics and automation, 1994. Proceedings 1994, vol 1, pp 767–774Google Scholar
  17. 17.
    Kuniyoshi Y, Rickki J, Ishii M, Rougeaux S, Kita N, Sakane S, Kakikura M (1994) Vision-based behaviors for multi-robot cooperation. In: Proceedings of the IEEE/RSJ/GI international conference on intelligent robots and systems ’94, vol 2. ‘Advanced robotic systems and the real world’, IROS ’94, pp 925–932Google Scholar
  18. 18.
    Lambrinos D, Roggendorf T, Pfeifer R (2001) Insect strategies of visual homing in mobile robots. In: Biorobotics—methods and applications. AAAI Press, pp 37–66Google Scholar
  19. 19.
    Magnenat S, Waibel M, Beyeler A (2009) Enki—an open source fast 2d robot simulator.
  20. 20.
    Magnenat S, Rtornaz P, Bonani M, Longchamp V, Mondada F (2010) ASEBA: a modular architecture for event-based control of complex robots. IEEE/ASME transactions on mechatronics PP(99):1–9. doi: 10.1109/TMECH.2010.2042722.
  21. 21.
    Nouyan S, Gross R, Dorigo M, Bonani M, Mondada F (2005) Group transport along a robot chain in a self-organised robot colony. In: Proceedings of the 9th international conference on intelligent autonomous systems, IOS. IOS Press, pp 433–442Google Scholar
  22. 22.
    Satizábal HF, Upegui A, Pérez-Uribe A (2010) Social target localization in a population of foragers. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Studies in computational intelligence, vol 284. NICSO. Springer, Berlin, pp 13–24Google Scholar
  23. 23.
    Schmickl T, Crailsheim K (2006) Trophallaxis among swarm-robots: a biologically inspired strategy for swarm robotics. In: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, 2006. BioRob 2006, pp 377–382. doi: 10.1109/BIOROB.2006.1639116
  24. 24.
    Smith JM, Szathmary E (2000) The origins of life: from the birth of life to the origin of language. Oxford University Press, USAGoogle Scholar
  25. 25.
    Sugawara K, Kazama T, Watanabe T (2004) Foraging behavior of interacting robots with virtual pheromone. In: Proceedings 2004 IEEE/RSJ international conference on intelligent robots and systems, 2004 (IROS 2004), vol 3, pp 3074–3079. doi: 10.1109/IROS.2004.1389878
  26. 26.
    Werger B, Mataric MJ (1996) Robotic “food” chains: externalization of state and program for minimal-agent foraging. In: Proceedings of 4th internationl conference simulation of adaptive behavior: from animals to animats, vol 4. The MIT Press, pp 625–634Google Scholar
  27. 27.
    Winfield A (2009) Towards an engineering science of robot foraging. Distrib Auton Robot Syst 8: 185–192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Héctor F. Satizábal
    • 1
  • Andres Upegui
    • 1
  • Andres Perez-Uribe
    • 1
  • Philippe Rétornaz
    • 2
  • Francesco Mondada
    • 2
  1. 1.REDS, University of Applied Sciences Western SwitzerlandYverdon-les-BainsSwitzerland
  2. 2.LSRO-MOBOTSEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations