Advertisement

Memetic Computing

, Volume 1, Issue 1, pp 35–54 | Cite as

Research topics in discrete estimation of distribution algorithms based on factorizations

  • Roberto Santana
  • Pedro Larrañaga
  • Jose A. Lozano
Regular Research Paper

Abstract

In this paper, we identify a number of topics relevant for the improvement and development of discrete estimation of distribution algorithms. Focusing on the role of probability distributions and factorizations in estimation of distribution algorithms, we present a survey of current challenges where further research must provide answers that extend the potential and applicability of these algorithms. In each case we state the research topic and elaborate on the reasons that make it relevant for estimation of distribution algorithms. In some cases current work or possible alternatives for the solution of the problem are discussed.

Keywords

Estimation of distribution algorithms Probability distributions Factorizations Bayesian networks Fitness function Problem structure Macroscopic-macroscopic algorithms Hybrid EDAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baluja S (2006) Incorporating a priori knowledge in probabilistic-model based optimization. In: Pelikan M, Sastry K, Cantú-Paz E (eds) Scalable optimization via probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 205–222Google Scholar
  2. 2.
    Bengoetxea E (2003) Inexact Graph matching using estimation of distribution algorithms. Dissertation, Ecole Nationale Supérieure des TélécommunicationsGoogle Scholar
  3. 3.
    Bengoetxea E, Larrañaga P, Bloch I, Perchant A (2002) Estimation of distribution algorithms. a new tool for evolutionary computation chapter solving graph matching with EDAs using permutation-based representation, Kluwer, Boston, pp 239–264Google Scholar
  4. 4.
    Bilmes J (2000) Dynamic Bayesian multinets. In: Boutilier C, Goldszmidt M (eds) Proceedings of the 16th conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers, Menlo Park, pp 38–45Google Scholar
  5. 5.
    Blickle T, Thiele L (1996) A comparison of selection schemes used in evolutionary algorithms. Evolut Comput 4(4): 361–394CrossRefGoogle Scholar
  6. 6.
    Bosman PA, Grahl J (2008) Matching inductive search bias and problem structure in continuous estimation of distribution algorithms. Eur J Oper Res 185: 1246–1264MATHCrossRefGoogle Scholar
  7. 7.
    Bosman PA, Thierens D (1999) Linkage information processing in distribution estimation algorithms. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of the genetic and evolutionary computation conference GECCO-1999, vol I, Orlando, FL, 1999. Morgan Kaufmann Publishers, San Francisco, pp 60–67Google Scholar
  8. 8.
    Bosman PA, Thierens D (2001) Crossing the road to efficient ideas for permutation problems. In: Spector L, Goodman E, Wu A, Langdon W, Voigt H, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon M, Burke E (eds) Proceedings of the genetic and evolutionary computation conference GECCO-2001, San Francisco, CA, 2001. Morgan Kaufmann Publishers, San Francisco, pp 219–226Google Scholar
  9. 9.
    Bosman PA, Thierens D (2002) Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms. Int J Approx Reason 31(3): 259–289MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bosman PA, Thierens D (2006) Numerical optimization with real-valued estimation-of-distribution algorithms. In: Pelikan M, Sastry K, Cantú-Paz E (eds) Scalable Optimization via Probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 91–120Google Scholar
  11. 11.
    Branke J (1999) Evolutionary approaches to dynamic optimization problems—a survey. In: Wu AS (ed) Proceedings of the genetic and evolutionary computation conference GECCO-1999, Workshop Program, Orlando, FL, 1999. Morgan Kaufmann Publishers, San Francisco, pp 134–137Google Scholar
  12. 12.
    Braunstein A, Mézard M, Zecchina R (2005) Survey propagation: An algorithm for satisfiability. Random Struct Algorithms 27(2): 201–226MATHCrossRefGoogle Scholar
  13. 13.
    Brownlee S, McCall J, Zhang Q, Brown D (2008) Approaches to selection and their effect on fitness modelling in an estimation of distribution algorithm. In: Proceedings of the 2008 congress on evolutionary computation CEC-2008, Hong Kong, 2008. IEEE Press, pp 2626–2633Google Scholar
  14. 14.
    de la Ossa L, Gámez JA, Puerta JM (2004) Migration of probability models instead of individuals: an alternative when applying the island model to EDAs. In: Parallel problem solving from nature (PPSN VIII), vol 3242. Springer, Berlin, pp 242–252Google Scholar
  15. 15.
    Echegoyen C, Lozano JA, Santana R, Larrañaga P (2007) Exact Bayesian network learning in estimation of distribution algorithms. In: Proceedings of the 2007 congress on evolutionary computation CEC-2007. IEEE Press, pp 1051–1058Google Scholar
  16. 16.
    Echegoyen C, Santana R, Lozano JA, Larrañaga P (2008) Linkage in evolutionary computation, chapter The impact of probabilistic learning algorithms in EDAs based on Bayesian networks. Studies in computational intelligence. Springer, Berlin, pp 109–139Google Scholar
  17. 17.
    Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315: 972–976CrossRefMathSciNetGoogle Scholar
  18. 18.
    Gámez JA, Mateo JL, Puerta JM (2007) EDNA: estimation of dependency networks algorithm. In: Mira J, Álvarez JR (eds) Bio-inspired modeling of cognitive tasks, second international work-conference on the interplay between natural and artificial computation, IWINAC 2007. Lecture notes in computer science, vol 4527. Springer, Berlin, pp 427–436Google Scholar
  19. 19.
    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, ReadingMATHGoogle Scholar
  20. 20.
    Grosset L, Riche R, Haftka RT (2006) A double-distribution statistical algorithm for composite laminate optimization. Struct Multidiscipl Optim 31(1): 49–59CrossRefGoogle Scholar
  21. 21.
    Handa H (2005) Estimation of distribution algorithms with mutation. In: Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 3448. Springer, Berlin, pp 112–121Google Scholar
  22. 22.
    Harik GR, Lobo FG, Sastry K (2006) Linkage learning via probabilistic modeling in the ECGA. In: Pelikan M, Sastry K, Cantú-Paz E (eds) Scalable optimization via probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 39–62Google Scholar
  23. 23.
    Hartmann AK, Weigt M (2005) Phase transitions in combinatorial optimization problems: basics, algorithms and statistical mechanics. Wiley, NYMATHCrossRefGoogle Scholar
  24. 24.
    Hauschild M, Pelikan M (2008) Enhancing efficiency of hierarchical BOA via distance-based model restrictions. MEDAL Report No. 2008007, Missouri Estimation of Distribution Algorithms Laboratory (MEDAL), April 2008Google Scholar
  25. 25.
    Hauschild M, Pelikan M, Lima C, Sastry K (2007) Analyzing probabilistic models in hierarchical BOA on traps and spin glasses. In: Thierens D et al (eds) Proceedings of the genetic and evolutionary computation conference GECCO-2007, vol I. London, UK, 2007. ACM Press, New York, pp 523–530Google Scholar
  26. 26.
    Hauschild M, Pelikan M, Sastry K, Goldberg DE (2008) Using previous models to bias structural learning in the hierarchical BOA. MEDAL Report No. 2008003, Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)Google Scholar
  27. 27.
    Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20: 197–243MATHGoogle Scholar
  28. 28.
    Henrion M (1988) Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer JF, Kanal LN (eds) Proceedings of the second annual conference on uncertainty in artificial intelligence. Elsevier, Amsterdam, pp 149–164Google Scholar
  29. 29.
    Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  30. 30.
    Höns R (2006) Estimation of distribution algorithms and minimum relative entropy. Dissertation, University of Bonn, Bonn, GermanyGoogle Scholar
  31. 31.
    Höns R, Santana R, Larrañaga P, Lozano JA (2007) Optimization by max-propagation using Kikuchi approximations. Technical Report EHU-KZAA-IK-2/07, Department of Computer Science and Artificial Intelligence, University of the Basque Country, November 2007Google Scholar
  32. 32.
    Johnson A, Shapiro JL (2002) The importance of selection mechanisms in distribution estimation algorithms. In: Collet P (ed) Proceedings of EA 2001. Lecture notes in computer science, vol 2310. Springer, Berlin, pp 91–103Google Scholar
  33. 33.
    Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21: 341–383CrossRefGoogle Scholar
  34. 34.
    Kallel L, Naudts B, Reeves R (2000) Properties of fitness functions and search landscapes. In: Kallel L, Naudts B, Rogers A (eds) Theoretical aspects of evolutionary computing. Springer, Berlin, pp 177–208Google Scholar
  35. 35.
    Kschischang FR, Frey BJ, Loeliger HA (2001) Factor graphs and the sum-product algorithm. IEEE Trans Inf Theory 47(2): 498–519MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Larrañaga P (2002) Estimation of distribution algorithms. a new tool for evolutionary computation. A review on estimation of distribution algorithms. Kluwer, Boston, pp 55–98Google Scholar
  37. 37.
    Larrañaga P, Etxeberria R, Lozano JA, Peña J (2000) Combinatorial optimization by learning and simulation of Bayesian networks. In: Proceedings of the sixteenth annual conference on uncertainty in artificial intelligence (UAI-2000), San Francisco, CA, 2000. Morgan Kaufmann Publishers, Menlo Park, pp 343–352Google Scholar
  38. 38.
    Larrañaga P, Lozano JA editors (2002) Estimation of distribution algorithms. a new tool for evolutionary computation. Kluwer Academic Publishers, BostonGoogle Scholar
  39. 39.
    Lauritzen SL (1996) Graphical models. Clarendon Press, OxfordGoogle Scholar
  40. 40.
    Leone M, Weigt M, Weigt M (2007) Clustering by soft-constraint affinity propagation: applications to gene-expression data. Bioinformatics 23(20): 2708–2715CrossRefGoogle Scholar
  41. 41.
    Lima CF, Pelikan M, Goldberg DE, Lobo FG, Sastry K, Hauschild M (2007) Influence of selection and replacement strategies on linkage learning in BOA. In: Proceedings of the 2007 congress on evolutionary computation CEC-2007. IEEE Press, pp 1083–1090Google Scholar
  42. 42.
    Lozano JA, Larrañaga P, Inza I, Bengoetxea E, editors (2006) Towards a new evolutionary computation: advances on estimation of distribution algorithms. Springer, BerlinGoogle Scholar
  43. 43.
    Lozano JA, Sagarna R, Larrañaga P (2002) Parallel estimation of distribution algorithms. In: Larrañaga P, Lozano JA (eds) Estimation of distribution algorithms. A new tool for evolutionary computation. Kluwer Academic Publishers, Boston, pp 125–142Google Scholar
  44. 44.
    Madera J, Alba E, Ochoa A (2005) Parallel estimation of distribution algorithms. In: Alba E (eds) Parallel metaheuristics. Wiley, NY, pp 203–222CrossRefGoogle Scholar
  45. 45.
    Madera J, Dorronsoro B (2006) Estimation of distribution algorithms. In: Metaheuristic procedures for training neural networks, operations research—computer science interfaces. Springer, Berlin, pp 87–108Google Scholar
  46. 46.
    Mahnig T, Mühlenbein H (2001) Comparing the adaptive Boltzmann selection schedule SDS to truncation selection. In: Evolutionary computation and probabilistic graphical models. Proceedings of the third symposium on adaptive systems (ISAS-2001), Havana, Cuba, March 2001, pp 121–128Google Scholar
  47. 47.
    Mahnig T, Mühlenbein H (2001) Optimal mutation rate using Bayesian priors for estimation of distribution algorithms. In: Steinhöfel K (ed) Proceedings of the first symposium on stochastic algorithms: foundations and applications, SAGA-2001. Lecture notes in computer science, vol 2264. Springer, Berlin, pp 33–48Google Scholar
  48. 48.
    Mendiburu A, Lozano J, Miguel-Alonso J (2005) Parallel implementation of EDAs based on probabilistic graphical models. IEEE Trans Evolut Comput 9(4): 406–423CrossRefGoogle Scholar
  49. 49.
    Mendiburu A, Santana R, Bengoetxea E, Lozano J (2007) A parallel framework for loopy belief propagation. In: Thierens D et al (eds) Proceedings of the genetic and evolutionary computation conference GECCO-2007, vol II, London, UK, 2007, Companion material. ACM Press, New York, pp 2843–2850Google Scholar
  50. 50.
    Mézard M, Parisi G, Zechina R (2002) Analytic and algorithmic solution of random satisfiability problems. Science 297: 812–812CrossRefGoogle Scholar
  51. 51.
    Michalski RS (2000) Learnable evolution model: Evolutionary processes guided by machine learning. Mach Learn 38: 9–40MATHCrossRefGoogle Scholar
  52. 52.
    Miquélez T, Bengoetxea E, Larrañaga P (2004) Evolutionary computation based on Bayesian classifiers. Int J Appl Math Comput Sci 14(3): 101–115Google Scholar
  53. 53.
    Miquélez T, Bengoetxea E, Mendiburu A, Larrañaga P (2007) Combining Bayesian classifiers and estimation of distribution algorithms for optimization in continuous domains. Connect Sci 19(4): 297–319CrossRefGoogle Scholar
  54. 54.
    Mühlenbein H (2007) Convergence of estimation of distribution algorithms for finite samples (submitted)Google Scholar
  55. 55.
    Mühlenbein H, Höns R (2005) The estimation of distributions and the minimum relative entropy principle. Evolut Comput 13(1): 1–27CrossRefGoogle Scholar
  56. 56.
    Mühlenbein H, Höns R (2006) The factorized distributions and the minimum relative entropy principle. In: Pelikan M, Sastry K, Cantú-Paz E (eds) Scalable optimization via probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 11–38Google Scholar
  57. 57.
    Mühlenbein H, Mahnig T (2000) Theoretical Aspects of Evolutionary Computing, chapter Evolutionary algorithms: from recombination to search distributions. Springer, Berlin, pp 137–176Google Scholar
  58. 58.
    Mühlenbein H, Mahnig T (2001) Evolutionary computation and beyond. In: Uesaka Y, Kanerva P, Asoh H (eds) Foundations of Real-World Intelligence. CSLI Publications, Stanford, pp 123–188Google Scholar
  59. 59.
    Mühlenbein H, Mahnig T (2002) Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning. Int J Approx Reason 31(3): 157–192MATHCrossRefGoogle Scholar
  60. 60.
    Mühlenbein H, Mahnig T, Ochoa A (1999) Schemata, distributions and graphical models in evolutionary optimization. J Heuristics 5(2): 213–247CrossRefGoogle Scholar
  61. 61.
    Mühlenbein H, Paaß G (1996) From recombination of genes to the estimation of distributions I. Binary parameters. In: Voigt H-M, Ebeling W, Rechenberg I, Schwefel H-P (eds) Parallel problem solving from nature—PPSN IV. Lectures notes in computer science, Berlin, 1996, vol 1141. Springer, Berlin, pp 178–187Google Scholar
  62. 62.
    Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization. Evolut Comput 1(1): 25–49CrossRefGoogle Scholar
  63. 63.
    Munetomo M, Goldberg DE (1999) A genetic algorithm using the linkage identification by nonlinearity check. In: Proceedings of the IEEE international conference on systems, man, and cybernetics SMC-1999, pp 595–600Google Scholar
  64. 64.
    Nilsson D (1998) An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Stat Comput 2: 159–173CrossRefGoogle Scholar
  65. 65.
    Ocenasek J, Cantú-Paz E, Pelikan M, Schwarz J (2006) Design of parallel estimation of distribution algorithms. In: Pelikan M, Sastry K, Cantú-Paz E (eds) Scalable optimization via probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 187–204Google Scholar
  66. 66.
    Ocenasek J, Schwarz J (2002) Estimation of distribution algorithm for mixed continuous-discrete optimization problems. In: Proceedings of the 2nd Euro-International symposium on computational intelligence, Kosice, Slovakia, 2002. IOS Press, pp 227–232Google Scholar
  67. 67.
    Ochoa A (1999) EBBA—Evolutionary best basis algorithm. In: Ochoa A, Soto MR, Santana R (eds) Proceedings of the second international symposium on adaptive systems (ISAS 99), Havana, Cuba, March 1999. Editorial Academia, pp 93–98Google Scholar
  68. 68.
    Ochoa A, Höns R, Soto MR, Mühlenbein H (2003) A maximum entropy approach to sampling in EDA— the single connected case. In: Progress in pattern recognition, speech and image analysis. Lectures notes in computer science, vol 2905. Springer, Berlin, pp 683–690Google Scholar
  69. 69.
    Ochoa A, Soto MR (2006) Linking entropy to estimation of distribution algorithms. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation: advances on estimation of distribution algorithms. Springer, Berlin, pp 1–38Google Scholar
  70. 70.
    Ochoa A, Soto MR, Santana R, Madera J, Jorge N (1999) The factorized distribution algorithm and the junction tree: a learning perspective. In: Ochoa A, Soto MR, Santana R (eds) Proceedings of the second symposium on artificial intelligence (CIMAF-99), Havana, Cuba, March 1999, pp 368–377Google Scholar
  71. 71.
    Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San MateoGoogle Scholar
  72. 72.
    Pelikan M (2005) Hierarchical Bayesian optimization algorithm. toward a new generation of evolutionary algorithms. Studies in fuzziness and soft computing. Springer, BerlinGoogle Scholar
  73. 73.
    Pelikan M, Goldberg DE (2003) Hierarchical BOA solves Ising spin glasses and Max-Sat. IlliGAL Report No. 2003001, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, January 2003Google Scholar
  74. 74.
    Pelikan M, Goldberg DE, Cantü-Paz E (2000) Bayesian optimization algorithm, population sizing, and time to convergence. In: Proceedings of the genetic and evolutionary computation conference GECCO-2000, pp 275–282Google Scholar
  75. 75.
    Pelikan M, Hartmann AK (2006) Searching for ground states of Ising spin glasses with hierarchical BOA and cluster exact approximation. In: Pelikan M, Sastry K, Cantú-Paz E (eds) Scalable optimization via probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 333–349Google Scholar
  76. 76.
    Pelikan M, Sastry K (2004) Fitness inheritance in the Bayesian optimization algorithm. In: Genetic and evolutionary computation—GECCO 2004. Lectures notes in computer science, vol 3103. Springer, Berlin, pp 48–59Google Scholar
  77. 77.
    Pelikan M, Sastry K, Cantú-Paz E (eds) (2006) Scalable optimization via probabilistic modeling: from algorithms to applications. Studies in computational intelligence. Springer, BerlinGoogle Scholar
  78. 78.
    Pelikan M, Sastry K, Goldberg DE (2008) Sporadic model building for efficiency enhancement of the hierarchical BOA. Genet Progr Evol Mach 9(1): 53–84CrossRefGoogle Scholar
  79. 79.
    Peña J, Lozano JA, Larrañaga P (2005) Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian networks. Evolut Comput 13(1): 43–66CrossRefGoogle Scholar
  80. 80.
    Peña JM, Robles V, Larrañaga P, Herves V, Rosales F, Pérez MS (2004) GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. In: Proceedings of the 17th international conference on innovations in applied artificial intelligence. Lecture notes in artificial intelligence, vol 3029. Springer, Berlin, pp 361–371Google Scholar
  81. 81.
    Pereira FB, Machado P, Costa E, Cardoso A, Ochoa A, Santana R, Soto MR (2000) Too busy to learn. In: Proceedings of the 2000 congress on evolutionary computation CEC-2000, La Jolla Marriott Hotel La Jolla, California, USA, July 2000. IEEE Press, pp 720–727Google Scholar
  82. 82.
    Prügel-Bennet A (2004) Symmetry breaking in population-based optimization. IEEE Trans Evolut Comput 8(1): 63–79CrossRefGoogle Scholar
  83. 83.
    Rivera JP, Santana R (2000) Design of an algorithm based on the estimation of distributions to generate new rules in the XCS classifier system. Technical Report ICIMAF 2000-100, CEMAFIT 2000-78, Institute of Cybernetics, Mathematics and Physics, Havana, Cuba, June 2000Google Scholar
  84. 84.
    Robles V, de Miguel P, Larrañaga P (2002) Solving the traveling salesman problem with EDAs. In: Larrañaga P, Lozano JA (eds) Estimation of distribution algorithms. A new tool for evolutionary computation. Kluwer Academic Publishers, Boston, pp 227–238Google Scholar
  85. 85.
    Robles V, Peña JM, Pérez MS, Herves V (2006) GA-EDA: A new hybrid cooperative search evolutionary algorithm. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation. Advances in estimation of distribution algorithms. Springer, Berlin, pp 187–220Google Scholar
  86. 86.
    Romero T, Larrañaga P (2008) Triangulation of Bayesian networks with recursive estimation of distribution algorithms. Int J Approx Reason (accepted for publication)Google Scholar
  87. 87.
    Romero T, Larrañaga P, Sierra B (2004) Learning Bayesian networks in the space of orderings with estimation of distribution algorithms. Int J Pattern Recognit Artif Intell 18(4): 607–625CrossRefGoogle Scholar
  88. 88.
    Rosete A, Ochoa A, Sebag M (1999) Efficient-discarding fitness functions. In: Wu AS (ed) Proceedings of the genetic and evolutionary computation conference GECCO-1999, late breaking papers, Orlando, FL, 1999. Morgan Kaufmann Publishers, San Francisco, pp 223–228Google Scholar
  89. 89.
    Sagarna R, Lozano JA (2006) Scatter search in software testing, comparison and collaboration with estimation of distribution algorithms. Eur J Oper Res 169: 392–412MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    Santana R (2003) Factorized distribution algorithms: selection without selected population. In Proceedings of the 17th European simulation multiconference ESM-2003, Nottingham, England, pp 91–97Google Scholar
  91. 91.
    Santana R (2005) Estimation of distribution algorithms with Kikuchi approximations. Evolut Comput 13(1): 67–97CrossRefGoogle Scholar
  92. 92.
    Santana R (2006) Advances in probabilistic graphical models for optimization and learning. applications in protein modelling. Dissertation, University, Basque CountryGoogle Scholar
  93. 93.
    Santana R, de León EP, Ochoa A (1999) The edge incident model. In: Ochoa A, Soto MR, Santana R (eds) Proceedings of the second symposium on artificial intelligence (CIMAF-99), Havana, Cuba, March 1999, pp 352–359Google Scholar
  94. 94.
    Santana R, Larrañaga P, Lozano JA (2005) Interactions and dependencies in estimation of distribution algorithms. In: Proceedings of the 2005 congress on evolutionary computation CEC-2005, Edinburgh, U.K., 2005. IEEE Press, pp 1418–1425Google Scholar
  95. 95.
    Santana R, Larrañaga P, Lozano JA (2006) Mixtures of Kikuchi approximations. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Proceedings of the 17th European conference on machine learning: ECML 2006. Lecture notes in artificial intelligence, vol 4212. Springer, Berlin, pp 365–376Google Scholar
  96. 96.
    Santana R, Larrañaga P, Lozano JA (2007) The role of a priori information in the minimization of contact potentials by means of estimation of distribution algorithms. In: Marchiori E, Moore JH, Rajapakse JC (eds) Proceedings of the fifth european conference on evolutionary computation, machine learning and data mining in bioinformatics. Lecture notes in computer science, vol 4447. Springer, Berlin, pp 247–257Google Scholar
  97. 97.
    Santana R, Larrañaga P, Lozano JA (2007) Side chain placement using estimation of distribution algorithms. Artif Intell Med 39(1): 49–63CrossRefGoogle Scholar
  98. 98.
    Santana R, Larrañaga P, Lozano JA (2008) Adaptive estimation of distribution algorithms. In: Cotta C, Sevaux M, Sörensen K (eds) Adaptive and multilevel metaheuristics. Studies in computational intelligence, vol 136. Springer, Berlin, pp 177–197Google Scholar
  99. 99.
    Santana R, Larrañaga P, Lozano JA (2008) Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem. J Heuristics 14: 519–547MATHCrossRefGoogle Scholar
  100. 100.
    Santana R, Larrañaga P, Lozano JA (2008) Protein folding in simplified models with estimation of distribution algorithms. IEEE Trans Evolut Comput 12(4): 418–438CrossRefGoogle Scholar
  101. 101.
    Santana R, Ochoa A, Soto MR (2001) Factorized Distribution Algorithms for functions with unitation constraints. In: Evolutionary Computation and probabilistic graphical models. Proceedings of the third symposium on adaptive systems (ISAS-2001), Havana, Cuba, March 2001, pp 158–165Google Scholar
  102. 102.
    Sastry K, Goldberg DE, Llorá X (2007) Towards billion-bit optimization via a parallel estimation of distribution algorithm. In: Thierens D et al. (ed.), Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2007, vol I. London, UK, 2007. ACM Press, New York, pp 577–584Google Scholar
  103. 103.
    Sastry K, Pelikan M, Goldberg D (2004) Efficiency enhancement of genetic algorithms via building-block-wise fitness estimation. In: Proceedings of the 2004 congress on evolutionary computation CEC-2004, Portland, Oregon, 2004. IEEE Press, pp 720–727Google Scholar
  104. 104.
    Sastry K, Pelikan M, Goldberg DE (2006) Efficiency enhancement of estimation of distribution algorithms. In: PelikanM Sastry K, Cantú-Paz E (eds) Scalable optimization via probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 161–186Google Scholar
  105. 105.
    Shakya S, McCall J (2007) Optimization by estimation of distribution with DEUM framework based on Markov random fields. Int J Autom Comput 4(3): 262–272CrossRefGoogle Scholar
  106. 106.
    Shakya S, McCall J, Brown D (2005) Using a Markov network model in a univariate EDA: an empirical cost-benefit analysis. In: Beyer H-G, O’Reilly U-M (eds) Proceedings of genetic and evolutionary computation conference GECCO-2005, Washington, D.C., USA, 2005. ACM Press, New York, pp 727–734Google Scholar
  107. 107.
    Shan Y, McKay RI, Essam D, Abbass HA (2006) A survey of probabilistic model building genetic programming. In: Pelikan M, Sastry K, Cantú-Paz E (eds) Scalable optimization via probabilistic modeling: from algorithms to applications, studies in computational intelligence. Springer, Berlin, pp 121–160Google Scholar
  108. 108.
    Shapiro JL (2005) Drift and scaling in estimation of distribution algorithms. Evolut Comput 13(1): 99–123CrossRefGoogle Scholar
  109. 109.
    Soto MR (2003) A Single Connected factorized distribution algorithm and its cost of evaluation. Dissertation, University of Havana, Havana, Cuba, July 2003 (in Spanish)Google Scholar
  110. 110.
    Soto MR, Ochoa A (2000) A factorized distribution algorithm based on polytrees. In: Proceedings of the 2000 congress on evolutionary computation CEC-2000, La Jolla Marriott Hotel La Jolla, California, USA, 6–9 July 2000. IEEE Press, pp 232–237Google Scholar
  111. 111.
    Soto MR, Ochoa A, Acid S, Campos LM (1999) Bayesian evolutionary algorithms based on simplified models. In: Ochoa A, Soto MR, Santana R (eds) Proceedings of the second symposium on artificial intelligence (CIMAF-99), Havana, Cuba, March 1999, pp 360–367Google Scholar
  112. 112.
    Suwannik W, Chongstitvatana P (2008) Solving one-billion-bit noisy OneMax problem using estimation distribution algorithm with arithmetic coding. In: Proceedings of the 2008 congress on evolutionary computation CEC-2008, Hong Kong, 2008. IEEE Press, pp 1203–1206Google Scholar
  113. 113.
    Thierens D, Bosman PA (2001) Multi-objective mixture-based iterated density estimation evolutionary algorithms. In: Spector L, Goodman E, Wu A, Langdon W, Voigt H, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon M, Burke E (eds) Proceedings of the genetic and evolutionary computation conference GECCO-2001, San Francisco, CA, 2001. Morgan Kaufmann Publishers, Menlo Park, pp 663–670Google Scholar
  114. 114.
    Tsuji M, Munetomo M, Akama K (2006) Linkage identification by fitness difference clustering. Evolut Comput 14(4): 383–409CrossRefGoogle Scholar
  115. 115.
    Tsutsui S (2003) Edge histogram based sampling and its application to ACO. In: Proceedings of the frontiers of evolutionary algorithm conference FEA-2003, pp 283–286Google Scholar
  116. 116.
    Wainwright MJ, Jaakkola TS, Willsky AS (2005) MAP estimation via agreement on (hyper)trees: Message-passing and linear programming. IEEE Trans Inf Theory 51(11): 3697–3717CrossRefMathSciNetGoogle Scholar
  117. 117.
    Wang J (2007) Genetic particle swarm optimization based on estimation of distribution. In: Li K et al (eds) Proceedings LSMS-2007. Lecture notes in computer science, vol 4688. Springer, Berlin, pp 287–296Google Scholar
  118. 118.
    Wang X, Wang H (2004) Evolutionary optimization with Markov random field prior. IEEE Trans Evolut Comput 8(6): 567–579CrossRefGoogle Scholar
  119. 119.
    Whittaker J (1991) Graphical models in applied multivariate statistics. Wiley Series in Probability and Mathematical Statistics, New YorkGoogle Scholar
  120. 120.
    William WH, Krasnogor N, Smith JE (eds) (2004) Recent advances in memetic algorithms. Studies in fuzziness and soft computing, vol 166. Springer, BerlinGoogle Scholar
  121. 121.
    Wright AH, Pulavarty S (2005) Estimation of distribution algorithm based on linkage discovery and factorization. In: Beyer H-G, OReilly U-M (eds) Proceedings of genetic and evolutionary computation conference GECCO-2005, Washington, DC, USA, 2005. ACM, New York, pp 695–703Google Scholar
  122. 122.
    Yanover C, Weiss Y (2003) Approximate inference and protein-folding. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems, vol 15. MIT Press, Cambridge, pp 1457–1464Google Scholar
  123. 123.
    Yanover C, Weiss Y (2004) Finding the M most probable configurations using loopy belief propagation. In: Thrun S, Saul L, Schölkopf B editors (2004) Advances in neural information processing systems, vol 16. MIT Press, CambridgeGoogle Scholar
  124. 124.
    Yedidia JS, Freeman WT, Weiss Y (2005) Constructing free energy approximations and generalized belief propagation algorithms. IEEE Trans Inf Theory 51(7): 2282–2312CrossRefMathSciNetGoogle Scholar
  125. 125.
    Yu T-L, Sastry K, Goldberg DE, Pelikan M (2007) Population sizing for entropy-based model building in genetic algorithms. In: Thierens D et al (ed) Proceedings of the genetic and evolutionary computation conference GECCO-2007, vol I. London, UK, 2007. ACM Press, New York, pp 601–608Google Scholar
  126. 126.
    Zhang Q, Li H (2007) MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6): 712–731CrossRefGoogle Scholar
  127. 127.
    Zhang Q (2004) On the convergence of a factorized distribution algorithm with truncation selection. Complexity 9(4): 17–23CrossRefMathSciNetGoogle Scholar
  128. 128.
    Zhang Q, Mühlenbein H (2004) On the convergence of a class of estimation of distribution algorithms. IEEE Trans Evolut Comput 8(2): 127–136CrossRefGoogle Scholar
  129. 129.
    Zhang Q, Sun J, Tsang EPK (2005) Evolutionary algorithm with guided mutation for the maximum clique problem. IEEE Trans Evolut Comput 9(2): 192–200CrossRefGoogle Scholar
  130. 130.
    Zhang Q, Sun J, Tsang EPK, Ford JA (2003) Hybrid estimation of distribution algorithm for global optimization. Eng Comput 21(1): 91–107Google Scholar
  131. 131.
    Zhang Q, Zhou A, Jin A (2008) Modelling the regularity in estimation of distribution algorithm for continuous multi-objective evolutionary optimization with variable linkages. IEEE Trans Evolut Comput 12(1): 49–63CrossRefGoogle Scholar
  132. 132.
    Zhou S, Heckendorn RB, Sun Z (2007) Detecting the epistatic structure of generalized embedded landscape (submitted)Google Scholar
  133. 133.
    Zhou S, Sun Z, Heckendorn RB (2007) Extended probe method for linkage discovery over high-cardinality alphabets. In: Thierens D et al (eds) Proceedings of the genetic and evolutionary computation conference GECCO-2007, vol I. New York, NY, USA, 2007. ACM Press, New York, pp 1484–1491Google Scholar
  134. 134.
    Zlochin M, Birattari M, Meuleau N, Dorigo M (2004) Model-based search for combinatorial optimization: a critical survey. Ann Oper Res 131(1–4): 373–395MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Roberto Santana
    • 1
  • Pedro Larrañaga
    • 2
  • Jose A. Lozano
    • 1
  1. 1.Intelligent Systems Group, Department of Computer Science and Artificial IntelligenceUniversity of the Basque CountrySan Sebastian-DonostiaSpain
  2. 2.Departamento de Inteligencia ArtificialUniversidad Politécnica de MadridMadridSpain

Personalised recommendations