Advertisement

Indian Journal of Clinical Biochemistry

, Volume 33, Issue 3, pp 255–261 | Cite as

Haemoglobin A1c or Glycated Albumin for Diagnosis and Monitoring Diabetes: An African Perspective

  • J. A. George
  • R. T. Erasmus
Review Article

Abstract

Diabetes mellitus (DM) has reached epidemic proportions across the globe with the largest increases seen in sub-Saharan Africa. Those that are diagnosed are largely poorly controlled. This review summarizes the limitations of the use of glycated haemoglobin (HBA1c) in Africa and current knowledge on the utility of glycated albumin and fructosamine in African patients. The diagnosis and monitoring of DM in African patients may be compromised by associated conditions like sickle cell anaemia, chronic kidney disease and HIV infection. Glycated albumin reflects short term glycaemia and is not affected by many conditions that alter HbA1c. It can be measured enzymatically, and this review discusses methods for analysis, and discusses the advantages and limitations in specific situations with an emphasis on conditions that also affect HbA1c.

Keywords

HbA1c Diabetes Glycated albumin Fructosamine 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    IDF Diabetes Atlas [Internet]. International Diabetes Federation. 2015 [cited 2015].Google Scholar
  2. 2.
    Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. NEJM. 1993;329:977–86.CrossRefGoogle Scholar
  3. 3.
    International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32:1327–34.CrossRefGoogle Scholar
  4. 4.
    Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, et al. Review: glycation of human serum albumin. Clin Chim Acta. 2013;425:64–76.CrossRefPubMedGoogle Scholar
  5. 5.
    Takei I, Hoshino T, Tominaga M, Ishibashi M, Kuwa K, Umemoto M, et al. Committee on Diabetes Mellitus Indices of the Japan Society of Clinical Chemistry-recommended reference measurement procedure and reference materials for glycated albumin determination. Ann Clin Biochem. 2016;53:124–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Rodriguez-Capote K, Tovell K, Holmes D, Dayton J, Higgins TN. Analytical evaluation of the Diazyme glycated serum protein assay on the siemens ADVIA 1800: comparison of results against HbA1c for diagnosis and management of diabetes. J Diabetes Sci Technol. 2015;9:192–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Araki T, Ishikawa Y, Okazaki H, Tani Y, Toyooka S, Satake M, et al. Introduction of glycated albumin measurement for all blood donors and the prevalence of a high glycated albumin level in Japan. J Diabetes Investig. 2012;3:492–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Johnson RN, Metcalf PA, Baker JR. Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta. 1983;127:87–95.CrossRefPubMedGoogle Scholar
  9. 9.
    Selvin E, Francis LM, Ballantyne CM, Hoogeveen RC, Coresh J, Brancati FL, et al. Nontraditional markers of glycemia: associations with microvascular conditions. Diabetes Care. 2011;34:960–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cavalot F. Do data in the literature indicate that glycaemic variability is a clinical problem? Glycaemic variability and vascular complications of diabetes. Diabetes Obes Metab. 2013;15:3–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Bairwa M, Ahamed F, Sinha S, Yadav K, Kant S, Pandav C. Directly observed iron supplementation for control of iron deficiency anemia. Indian J Public Health. 2017;61:37–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Rahman MM, Abe SK, Rahman MS, Kanda M, Narita S, Bilano V, et al. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: systematic review and meta-analysis. Am J Clin Nutr. 2016;103:495–504.CrossRefPubMedGoogle Scholar
  13. 13.
    Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115:4331–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    NGSP. HbA1c assay interferences US: niddk; 2010 [cited 2018 8th March].Google Scholar
  15. 15.
    Koga M, Hashimoto K, Murai J, Saito H, Mukai M, Ikegame K, et al. Usefulness of glycated albumin as an indicator of glycemic control status in patients with hemolytic anemia. Clin Chim Acta. 2011;412:253–7.CrossRefPubMedGoogle Scholar
  16. 16.
    English E, Idris I, Smith G, Dhatariya K, Kilpatrick ES, John WG. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a systematic review. Diabetologia. 2015;58:1409–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Sundaram RC, Selvaraj N, Vijayan G, Bobby Z, Hamide A, Rattina Dasse N. Increased plasma malondialdehyde and fructosamine in iron deficiency anemia: effect of treatment. Biomed Pharmacother. 2007;61:682–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Koga M, Saito H, Mukai M, Matsumoto S, Kasayama S. Influence of iron metabolism indices on glycated haemoglobin but not glycated albumin levels in premenopausal women. Acta Diabetol. 2010;47:65–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Duran L, Rodriguez C, Drozd D, Nance RM, Delaney JA, Burkholder G, et al. Fructosamine and hemoglobin A1c correlations in HIV-infected adults in routine clinical care: impact of anemia and albumin levels. AIDS Res Treat. 2015;2015:478750.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hashimoto K, Koga M. Indicators of glycemic control in patients with gestational diabetes mellitus and pregnant women with diabetes mellitus. World J Diabetes. 2015;6:1045–56.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhu J, Chen Y, Li C, Tao M, Teng Y. The diagnostic value of glycated albumin in gestational diabetes mellitus. J Endocrinol Invest. 2018;41:121–8.CrossRefPubMedGoogle Scholar
  22. 22.
    National Kidney F. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–86.CrossRefGoogle Scholar
  23. 23.
    Williams ME, Mittman N, Ma L, Brennan JI, Mooney A, Johnson CD, et al. The Glycemic Indices in Dialysis Evaluation (GIDE) study: comparative measures of glycemic control in diabetic dialysis patients. Hemodial Int. 2015;19:562–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Inoue K, Goto A, Kishimoto M, Tsujimoto T, Yamamoto-Honda R, Noto H, et al. Possible discrepancy of HbA1c values and its assessment among patients with chronic renal failure, hemodialysis and other diseases. Clin Exp Nephrol. 2015;19:1179–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dolscheid-Pommerich RC, Kirchner S, Weigel C, Eichhorn L, Conrad R, Stoffel-Wagner B, et al. Impact of carbamylation on three different methods, HPLC, capillary electrophoresis and TINIA of measuring HbA1c levels in patients with kidney disease. Diabetes Res Clin Pract. 2015;108:15–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Freedman BI, Shenoy RN, Planer JA, Clay KD, Shihabi ZK, Burkart JM, et al. Comparison of glycated albumin and haemoglobin A1c concentrations in diabetic subjects on peritoneal and haemodialysis. Perit Dial Int. 2010;30:72–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Freedman BI, Shihabi ZK, Andries L, Cardona CY, Peacock TP, Byers JR, et al. Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am J Nephrol. 2010;31:375–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Okada T, Nakao T, Matsumoto H, Shino T, Nagaoka Y, Tomaru R, et al. Association between markers of glycemic control, cardiovascular complications and survival in type 2 diabetic patients with end-stage renal disease. Intern Med. 2007;46:807–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Fukuoka K, Nakao K, Morimoto H, Nakao AI, Takatori Y, Arimoto K, et al. Glycated albumin levels predict long-term survival in diabetic patients undergoing haemodialysis. Nephrology. 2008;13:278–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Nathan DM, McGee P, Steffes MW, Lachin JM, Complications Trial Research Group. Relationship of glycated albumin to blood glucose and HbA1c values and to retinopathy, nephropathy, and cardiovascular outcomes in the DCCT/EDIC study. Diabetes. 2014;63:282–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen CW, Drechsler C, Suntharalingam P, Karumanchi SA, Wanner C, Berg AH. High glycated albumin and mortality in persons with diabetes mellitus on hemodialysis. Clin Chem. 2017;63:477–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Danese E, Montagnana M, Nouvenne A, Lippi G. Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes. J Diabetes Sci Technol. 2015;9:169–76.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    George JA, Venter WD, Van Deventer HE, Crowther NJ. A longitudinal study of the changes in body fat and metabolic parameters in a South African population of HIV-positive patients receiving an antiretroviral therapeutic regimen containing stavudine. AIDS Res Hum Retroviruses. 2009;25:771–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Ruslami R, Aarnoutse RE, Alisjahbana B, van der Ven AJ, van Crevel R. Implications of the global increase of diabetes for tuberculosis control and patient care. Trop Med Int Health. 2010;15:1289–99.CrossRefPubMedGoogle Scholar
  35. 35.
    McEbula V, Crowther NJ, Nagel SE, George JA. Diabetes and abnormal glucose tolerance in subjects with tuberculosis in a South African urban center. IJTLD. 2017;21:208–13.CrossRefGoogle Scholar
  36. 36.
    Oni T, Berkowitz N, Kubjane M, Goliath R, Levitt Naomi S, Wilkinson RJ. Trilateral overlap of tuberculosis, diabetes and HIV-1 in a high-burden African setting: implications for TB control. Eur Respir J. 2017;50:1700004.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Boillat-Blanco N, Ramaiya KL, Mganga M, Minja LT, Bovet P, Schindler C, et al. Transient hyperglycemia in patients with tuberculosis in Tanzania: implications for diabetes screening algorithms. J Infect Dis. 2016;213:1163–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97:1067–72.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Willi SM, Miller KM, DiMeglio LA, Klingensmith GJ, Simmons JH, Tamborlane WV, et al. Racial-ethnic disparities in management and outcomes among children with type 1 diabetes. Pediatrics. 2015;135:424–34.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bergenstal RM, Gal RL, Connor CG, Gubitosi-Klug R, Kruger D, Olson BA, et al. Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels. Ann Intern Med. 2017;167:95–102.CrossRefPubMedGoogle Scholar
  41. 41.
    Cavagnolli G, Pimentel AL, Freitas PAC, Gross JL, Camargo JL. Effect of ethnicity on HbA1c levels in individuals without diabetes: systematic review and meta-analysis. PLoS ONE. 2017;12:e0171315.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gould BJ, Davie SJ, Yudkin JS. Investigation of the mechanism underlying the variability of glycated haemoglobin in non-diabetic subjects not related to glycaemia. Clin Chim Acta. 1997;260:49–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Mosca L, Penco S, Patrosso Maria C, Marocchi A, Lapolla A, Sartore G, et al. Genetic variability of the fructosamine 3-kinase gene in diabetic patients. Clin Chem Lab Med. 2011;49:803.CrossRefPubMedGoogle Scholar
  44. 44.
    Shipman KE, Jawad M, Sullivan KM, Ford C, Gama R. Ethnic/racial determinants of glycemic markers in a UK sample. Acta Diabetol. 2015;52:687–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Carson AP, Muntner P, Selvin E, Carnethon MR, Li X, Gross MD, et al. Do glycemic marker levels vary by race? Differing results from a cross-sectional analysis of individuals with and without diagnosed diabetes. BMJ Open Diabetes Res Care. 2016;4:e000213.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Parrinello CM, Sharrett AR, Maruthur NM, Bergenstal RM, Grams ME, Coresh J, et al. Racial differences in and prognostic value of biomarkers of hyperglycemia. Diabetes Care. 2016;39:589–95.CrossRefPubMedGoogle Scholar
  47. 47.
    Koga M, Matsumoto S, Saito H, Kasayama S. Body mass index negatively influences glycated albumin, but not glycated hemoglobin, in diabetic patients. Endocr J. 2006;53:387–91.CrossRefPubMedGoogle Scholar
  48. 48.
    Reynolds AN, Duncan A, Kruimer D, Venn BJ. Glycated albumin is associated with body mass index in euglycemic adults but is not predictive of postprandial blood glucose response. J Clin Lab Anal. 2017;31(5).  https://doi.org/10.1002/jcla.22085.
  49. 49.
    Koga M, Hirata T, Kasayama S, Ishizaka Y, Yamakado M. Body mass index negatively regulates glycated albumin through insulin secretion in patients with type 2 diabetes mellitus. Clin Chim Acta. 2015;438:19–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Sumner AE, Duong MT, Aldana PC, Ricks M, Tulloch-Reid MK, Lozier JN, et al. A1C combined with glycated albumin improves detection of prediabetes in Africans: the Africans in America Study. Diabetes Care. 2016;39:271–7.PubMedGoogle Scholar
  51. 51.
    Sumner AE, Duong MT, Bingham BA, Aldana PC, Ricks M, Mabundo LS, et al. Glycated albumin identifies prediabetes not detected by hemoglobin A1c: the Africans in America Study. Clin Chem. 2016;62:1524–32.CrossRefPubMedGoogle Scholar
  52. 52.
    Utumatwishima JN, Chung ST, Bentley AR, Udahogora M, Sumner AE. Reversing the tide—diagnosis and prevention of T2DM in populations of African descent. Nat Rev Endocrinol. 2018;14:45–56.CrossRefPubMedGoogle Scholar
  53. 53.
    Koga M, Murai J, Saito H, Mukai M, Kasayama S. Serum glycated albumin, but not glycated haemoglobin, is low in relation to glycemia in hyperuricemic men. Acta Diabetol. 2010;47:173–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Blache D, Bourdon E, Salloignon P, Lucchi G, Ducoroy P, Petit JM, et al. Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes. Diabetes. 2015;64:960–72.CrossRefPubMedGoogle Scholar
  55. 55.
    Selvin E, Rawlings AM, Grams M, Klein R, Sharrett AR, Steffes M, et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014;2:279–88.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Selvin E, Rawlings AM, Lutsey PL, Maruthur N, Pankow JS, Steffes M, et al. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death “CLINICAL SUMMARY”. Circulation. 2015;132:269–77.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kengne AP, Erasmus RT, Levitt NS, Matsha TE. Alternative indices of glucose homeostasis as biochemical diagnostic tests for abnormal glucose tolerance in an African setting. Prim Care Diabetes. 2017;11:119–31.CrossRefPubMedGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2018

Authors and Affiliations

  1. 1.Department of Chemical PathologyNational Health Laboratory Services and University of WitwatersrandJohannesburgSouth Africa
  2. 2.Department of Chemical PathologyNational Health Laboratory Services and University of StellenboschStellenboschSouth Africa

Personalised recommendations