Indian Journal of Clinical Biochemistry

, Volume 33, Issue 3, pp 246–254 | Cite as

Renal Cell Carcinoma: Molecular Aspects

  • Aman Kumar
  • Niti Kumari
  • Vinny Gupta
  • Rajendra PrasadEmail author
Review Article


Renal cell carcinoma is the most common form of the kidney cancer accounting for more than 85% of the cases of which clear cell renal cell carcinoma (ccRCC) is the major histological subtype. The central molecular signature for ccRCC pathogenesis is the biallelic inactivation of VHL gene due to the presence of mutations/hyper-methylation/complete gene loss, which results in the downstream HIF activation. These events lead to increased tyrosine kinase receptor signalling pathways (RAS/MEK/ERK pathway, PI3K/AKT/mTOR pathway and NF-κB pathway), which through their downstream effector proteins causes the cell to proliferate and migrate. Recent studies have shown that VHL inactivation alone is not sufficient to induce the tumor. Mutations in numerous other genes that codes for chromatin modifiers (PBRM1, SETD2 and BAP1) and signalling proteins (PTEN and mTOR) have been identified along with activation of alternate signalling pathways like STAT and Sonic Hedgehog (SHH) pathway. It has also been shown that STAT pathway also works cooperatively with HIF to enhance the tumor progression. However, SHH pathway reactivation resulted in tumor regardless of the VHL status, indicating the complex nature of the tumor at the molecular level. Therefore, understanding the complete aetiology of ccRCC is important for future therapeutics.


Renal cell carcinoma Genomics Signalling Von Hippel–Lindau (VHL) Hypoxia inducible factor (HIF) Chromatin modifiers 


Authors contribution

All authors contributed to conception and design, manuscript preparation, read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest



  1. 1.
    Zeng Z, Que T, Zhang J, Hu Y. A study exploring critical pathways in clear cell renal cell carcinoma. Exp Ther Med. 2014;7:121–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Lopez-Beltran A, Carrasco JC, Cheng L, Scarpelli M, Kirkali Z, Montironi R. 2009 Update on the classification of renal epithelial tumors in adults. Int J Urol. 2009;16:432–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al. The heidelberg classification of renal cell tumors. J Pathol. 1997;183:131–3.CrossRefPubMedGoogle Scholar
  4. 4.
    Pavlovich CP, Schmidt LS, Phillips JL. The genetic basis of renal cell carcinoma. Urol Clin N Am. 2003;30:437–54.CrossRefGoogle Scholar
  5. 5.
    Shen C, Kaelin WG Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013;23:18–25.CrossRefPubMedGoogle Scholar
  6. 6.
    Beroukhim R, Brunet JP, Di Napoli A, Mertz KD, Seeley A, Pires MM, et al. Patterns of gene expression and copy number alterations in von Hippel–Lindau disease associated and sporadic clear cell carcinoma of the kidney. Can Res. 2009;69:4674–81.CrossRefGoogle Scholar
  7. 7.
    Furge KA, Tan MH, Dykema K, Kort E, Stadler W, Yao X, et al. Identification of deregulated oncogenic pathways in renal cell carcinoma: an integrated oncogenomic approach based on gene expression profiling. Oncogene. 2007;26:1346–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45:860–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221:125–38.CrossRefPubMedGoogle Scholar
  10. 10.
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Koul H, Huh JS, Rove KO, Crompton L, Koul S, Meacham RB, et al. Molecular aspects of renal cell carcinoma: a review. Am J Cancer Res. 2011;1:240–54.PubMedGoogle Scholar
  12. 12.
    Cuadros T, Trilla E, Sarro E, Vila MR, Vilardell J, Torres ID, et al. HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res. 2014;74:1416–28.CrossRefPubMedGoogle Scholar
  13. 13.
    Dormoy V, Danilin S, Lindner V, Thomas L, Rothhut S, Coquard C, et al. The sonic hedgehog signalling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol Cancer. 2009;8:123–39.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pavlovich CP, Schmidt LS. Searching for the hereditary causes of renal cell carcinoma. Nat Rev Cancer. 2004;4:381–93.CrossRefPubMedGoogle Scholar
  15. 15.
    Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacob SC, et al. Hereditary renal cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979;301:592–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Brugarolas J. Molecular genetics of clear cell renal cell carcinoma. J Clin Oncol. 2014;32:1968–76.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eble JN, Sauter G, Epstein JI, Sesterhenn IA, editors. Pathology and genetics of tumors of urinary system and male genital organs. Lyon: IARCPress; 2004.Google Scholar
  18. 18.
    Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Stebbins CE, Kaelin WG Jr, Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for HL tumor suppressor function. Science. 1999;284:455–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Richards FM, Schofield PN, Fleming S, Maher ER. Expression of the von Hippel–Lindau disease tumor suppressor gene during human embryogenesis. Hum Mol Genet. 1996;5:639–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Ohh M, Takagi Y, Aso T, Stebbins CE, Pavletich NP, Zbar B, et al. Synthetic peptides define critical contacts between elongin C, elongin B, and the von Hippel–Lindau protein. J Clin Invest. 1999;104:1583–91.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol. 2000;2:423–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Razafinjatovo C, Bihr S, Mischo A, Vogl U, Schmidinger M, Moch H, et al. Characterization of VHL missense mutations in sporadic clear cell renal cell carcinoma: hotspots, affected binding domains, functional impact on pVHL and therapeutic relevance. BMC Cancer. 2016;16:638.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM, et al. The von Hippel–Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci. 1997;94:2156–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Kamura T, Sato S, Iwai K, Krzeska MC, Conaway RC, Conaway JW. Activation of HIF1α ubiquitination by a reconstituted von Hippel–Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci. 2000;97:10430–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Schodel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 2016;69:646–57.CrossRefPubMedGoogle Scholar
  28. 28.
    Biswas S, Troy H, Leek R, Chung YL, Li JL, Raval RR, et al. Effects of HIF-1alpha and HIF2alpha on growth and metabolism of clear-cell renal cell carcinoma 786-0 xenografts. J Oncol. 2010;2010:757908.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, et al. Genetic and functional studies implicate HIF1 as a 14q kidney cancer suppressorgene. Cancer Discov. 2011;1:222–35.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Godinot C, Laplanche ED, Hervouet E, Simonnet H. Actuality of Warburg’s views in our understanding of renal cancer metabolism. J Bioenerg Biomembr. 2007;39:235–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Razorenova OV, Castellini L, Colavitti R, Edgington LE, Nicolau M, Huang X, et al. The apoptosis repressor with a CARD domain (ARC) gene is a direct hypoxia-inducible factor 1 target gene and promotes survival and proliferation of VHL-deficient renal cancer cells. Mol Cell Biol. 2014;34:739–51.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulted by von Hippel–Lindau tumor suppressor pVHL. Nature. 2003;425:307–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Keefe SM, Hoffman-Censits J, Cohen RB, Mamtani R, Heitjan D, Eliasof S, et al. Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I-IIa clinical trial. Ann Oncol. 2016;27:1579–85.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A, Melillo G, et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1), in patients with refractory solid tumors. Cancer Chemother Pharmacol. 2014;73:343–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Patnaik A, Papadopoulos KP, Tolcher AW, Beeram M, Urien S, Schaaf LJ, et al. Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;71:1499-06.CrossRefGoogle Scholar
  36. 36.
    Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, et al. A small-Molecule antagonist of HIF2 is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 2016;76:5491-00.CrossRefGoogle Scholar
  37. 37.
    Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kornakiewicz A, Solarek W, Bielecka ZF, Lian F, Szczylik C, Czarnecka AM. Mammalian target of rapamycin inhibitors resistance mechanisms in clear cell renal cell carcinoma. Curr Signal Transduct Ther. 2014;8:210–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Brenner W, Farber G, Herget T, Lehr HA, Hengstler JG, Thuroff W. Loss of tumor suppressor protein PTEN during renal angiogenesis. Int J Cancer. 2002;99:53–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Dey N, Das F, Choudhury NG, Mandal CC, Parekh DJ, Block K, et al. microRNA-21 governs TORC1 activation in renal Cancer cell proliferation and invasion. PLoS ONE. 2012;7:3–17.Google Scholar
  41. 41.
    White NMA, Masui O, Newsted D, Scorilas A, Romaschin AD, Bjarnason GA, et al. Galectin-1 has potential prognostic significance and is implicated in clear cell renal cell carcinoma progression through the HIF/mTOR signaling axis. Br J Cancer. 2010;110:1250–9.CrossRefGoogle Scholar
  42. 42.
    Fiorentino M, Gruppioni E, Massari F, Giunchi F, Altimari A, Ciccarese C, et al. Wide spetcrum mutational analysis of metastatic renal cell cancer: a retrospective next generation sequencing approach. Oncotarget. 2017;31:7328–35.Google Scholar
  43. 43.
    Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 2010;70:10090-00.CrossRefGoogle Scholar
  44. 44.
    Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer. 2010;46:1260–70.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Choueiri TK, Pal SK, McDermott DF, Morrissey S, Ferguson KC, Holland J. A phase I study of cabozantinib (XL184) in patients with renal cell cancer. Ann Oncol. 2014;25:1603–8.CrossRefPubMedGoogle Scholar
  46. 46.
    An J, Rettig MB. Mechanism of von Hippel–Lindau protein-mediated suppression of nuclear factor kappa B activity. Mol Cell Biol. 2005;25:7546–56.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Guttridge DC, Albanese JY, Pestell PG, Baldwin AS. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19:5785–99.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pei X, Li M, Zhan J, Yu Y, Wei X, Guan L, et al. Enhanced IMP3 expression activates NF-кB pathway and promotes renal cell carcinoma progression. PLoS ONE. 2015;10:e0124338.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Peri S, Devarajan K, Yang DH, Knudson AG, Balachandran S. Meta-analysis identifies NF-κB as a therapeutic target in renal cancer. PLoS ONE. 2013;8:e76746.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Labrousse-Arias D, Martínez-Alonso E, Corral-Escariz M, Bienes-Martínez R, Berridy J, Serrano-Oviedo L, et al. VHL promotes immune response against renal cell carcinoma via NF-κB-dependent regulation of VCAM-1. J Cell Biol. 2017;216:835–47.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pawlus MR, Wang L, Hu CJ. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene. 2014;33:1670–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Alchanati I, Nallar SC, Sun P, Gao L, Hu J, Stein A, et al. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas. Oncogene. 2006;25:7138–47.CrossRefPubMedGoogle Scholar
  53. 53.
    Qin J, Yang B, Xu BQ, Smithc A, Xu L, Yuan JL, et al. Concurrent CD44 s and STAT3 expression in human clear cell renal cellular carcinoma and its impact on survival. Int J Clin Exp Pathol. 2014;7:3235–44.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhou J, Wu K, Gao D, Zhu G, Wu D, Wang X, et al. Reciprocal regulation of hypoxia-inducible factor 2α and GLI1 expression associated with the radioresistance of renal cell carcinoma. Int J Radiat Oncol Biol Phys. 2014;90:942–51.CrossRefPubMedGoogle Scholar
  55. 55.
    Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469:539–42.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Togo Y, Yoshikawa Y, Suzuki T. Genomic profiling of the genes on chromosome 3p in sporadic clear cell renal cell carcinoma. Int J Oncol. 2016;48:1571–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Pawlowski R, Mühl SM, Sulser T, Krek W, Moch H, Schraml P. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer. 2013;132:E11–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Macher-Goeppinger S, Keith M, Tagscherer KE, Singer S. PBRM1 (BAF180) protein is functionally regulated by p53-induced protein degradation in renal cell carcinomas. J Pathol. 2017;237:460–71.CrossRefGoogle Scholar
  59. 59.
    Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen YB, Gonen M, et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res. 2013;19:3259–67.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gad S, Lefevre SH, Khoo SK, Giraud S, Vieillefond A, Vasiliu V, et al. Mutations in BHD and TP53 genes, but not in HNF1beta gene, in a large series of sporadic chromophobe renal cell carcinoma. Br J Cancer. 2007;96:336–40.CrossRefPubMedGoogle Scholar
  61. 61.
    Delgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463:360–3.CrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2017

Authors and Affiliations

  1. 1.Department of BiochemistryPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Personalised recommendations