Advertisement

Indian Journal of Clinical Biochemistry

, Volume 33, Issue 1, pp 46–52 | Cite as

Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes

  • Hori Ghaneialvar
  • Leila Soltani
  • Hamid Reza Rahmani
  • Abbas Sahebghadam LotfiEmail author
  • Masoud Soleimani
Original Article

Abstract

Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

Keywords

Mesenchymal stem cells Surface marker Multi potential differentiation 

Abbreviations

MSCs

Mesenchymal stem cells

CD

Cluster of differentiation

ESCs

Embryonic stem cells

iPSCs

Induced pluripotent stem cells

BM-MSCs

Bone marrow mesenchymal stem cells

DPBS

Dulbecco’s phosphate buffered saline

FBS

Fetal bovine serum

References

  1. 1.
    Fortier LA. Stem cells: classifications, controversies, and clinical applications. Vet Surg. 2005;34(5):415–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Blau HM, Brazelton T, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001;105(7):829–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Ferrari M, Corradi A, Lazzaretti M, De’Cillà M, Losi C, Villa R, et al. Adult stem cells: perspectives for therapeutic applications. Vet Res Commun. 2007;31(1):1–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Pera MF, Hasegawa K. Simpler and safer cell reprogramming. Nat Biotechnol. 2008;26(1):59–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Heidari B, Shirazi A, Akhondi MM, Hassanpour H, Behzadi B, Naderi MM, et al. Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone marrow, liver, and adipose tissue. Avicenna J Med Biotechnol. 2013;5(2):104–17.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh K-R, et al. Vascular endothelial growth factor–expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc. 2005;25(6):1168–73.CrossRefGoogle Scholar
  8. 8.
    McCulloch EA, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res. 1960;13(1):115–25.PubMedCrossRefGoogle Scholar
  9. 9.
    In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.CrossRefGoogle Scholar
  10. 10.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res. 2002;62(13):3603–8.PubMedGoogle Scholar
  11. 11.
    Lee K-D. Applications of mesenchymal stem cells: an updated review. Chang Gung Med J. 2008;31(3):228–36.PubMedGoogle Scholar
  12. 12.
    Kolf CM, Cho E, Tuan RS. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9(1):204.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    McCarty RC, Xian CJ, Gronthos S, Zannettino ACW, Foster BK. Application of autologous bone marrow derived mesenchymal stem cells to an ovine model of growth plate cartilage injury. Open Orthop J. 2010;4:204–10.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Davoodian N, Lotfi AS, Soleimani M, Mowla SJ. MicroRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem. 2014;115(9):1582–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Lyahyai J, Mediano DR, Ranera B, Sanz A, Remacha AR, Bolea R, et al. Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Vet Res. 2012;8:169.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Godoy RF, Alves ALG, Gibson AJ, Lima EM, Goodship AE. Do progenitor cells from different tissue have the same phenotype? Res Vet Sci. 2014;96(3):454–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Letouzey V, Tan KS, Deane JA, Ulrich D, Gurung S, Ong YR, et al. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium. PLoS ONE. 2015;10(5):e0127531.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Grzesiak J, Krzysztof M, Karol W, Joanna C. Isolation and morphological characterisation of ovine adipose-derived mesenchymal stem cells in culture. Int J Stem Cells. 2011;4(2):99–104.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon C, et al. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc. 2008;40(8):2649–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Dickinson H, Milton P, Jenkin G. The isolation and characterization of putative mesenchymal stem cells from the spiny mouse. Cytotechnology. 2012;64(5):591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cheng CC, Lian WS, Hsiao FSH, Liu IH, Lin SP, Lee YH, et al. Isolation and characterization of novel murine epiphysis derived mesenchymal stem cells. PLoS ONE. 2012;7(4):e36085.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pachón-Peña G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell B, et al. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol. 2011;226(3):843–51.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lin C-S, Ning H, Lin G, Lue TF. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy. 2012;14(10):1159–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Anderson P, Carrillo-Gálvez AB, García-Pérez A, Cobo M, Martín F. CD105 (endoglin)-negative murine mesenchymal stromal cells define a new multipotent subpopulation with distinct differentiation and immunomodulatory capacities. PLoS ONE. 2013;8(10):e76979.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J. 2006;20(8):1045–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Gilsanz A, Sánchez-Martín L, Gutiérrez-López MD, Ovalle S, Machado-Pineda Y, Reyes R, et al. ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci. 2013;70(3):475–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Mol Pathol. 1999;52(4):189–96.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332(2):370–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Roche S, Delorme B, Oostendorp RA, Barbet R, Caton D, Noel D, et al. Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics. 2009;9(2):223–32.PubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2017

Authors and Affiliations

  • Hori Ghaneialvar
    • 1
  • Leila Soltani
    • 2
  • Hamid Reza Rahmani
    • 3
  • Abbas Sahebghadam Lotfi
    • 1
    Email author
  • Masoud Soleimani
    • 4
  1. 1.Department of Clinical Biochemistry, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Animal Sciences, Faculty of AgricultureRazi UniversityKermanshahIran
  3. 3.Department of Animal Science, Faculty of AgricultureIsfahan University of TechnologyIsfahanIran
  4. 4.Department of Hematology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations