Indian Journal of Clinical Biochemistry

, Volume 32, Issue 4, pp 487–492 | Cite as

Erythrocyte Membrane Bound ATPase and Antioxidant Enzyme Changes Associated with Vascular Calcification is Reduced by Sodium Thiosulfate

  • Ramya Ramani
  • Abirami Ramachandran
  • Sriram Ravindran
  • Gino A. Kurian
Short Communication


Sodium thiosulfate (STS), a cyanide antidote has been reported to possess antioxidant and calcium chelation effects, useful for the treatment of renal failure due to vascular calcification and urolithiasis. The present study investigated the in vivo modulatory effects of STS on erythrocyte calcium, phosphorous levels, lipid peroxidation, antioxidant enzyme and membrane ATPase activities (Ca2+, Na+K+, Mg2+ and 5′′ nucleotidase) in an adenine induced model of vascular calcification in rats. Adenine (0.75%) was supplemented through the diet for 28 days, which resulted in significantly (P < 0.05) increased circulating calcium and phosphorous product and oxidative stress within the RBCs, as measured from lipid peroxidation and reduced antioxidant enzymes. The membrane ATPase activities were altered (increased Ca2+, Na+K+ ATPase and decreased Mg+ ATPase, 5′ nucleotidase) compared to the rats fed on normal diet. STS (400 mg/kg) given orally was effective in establishing a normalcy in the RBC alterations. This effect was more pronounced, when STS was given from day 28 to day 49 after induction of calcification, instead of day 0 to day 28. These findings may benefit to evaluate the effectiveness of STS therapy in patients with chronic renal failure associated with increased circulating calcium and phosphorous product that leads to stiffening of vascular smooth muscles of aorta, due to calcium deposition.


Vascular calcification Adenine Erythrocytes ATPase activity Oxidative stress 



Sodium thiosulfate


Early treatment


Late treatment

Ca × P

Calcium phosphorous product



The authors would like to acknowledge the management of SASTRA University, Thanjavur, India for the financial support through the Research and Modernization (R and M) grant for conducting this study.

Compliance with Ethical Standards

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    Towler DA. Vascular calcification in ESRD: another cloud appears in the perfect storm—but highlights a silver lining? Kidney Int. 2004;66(6):2467–8. doi: 10.1111/j.1523-1755.2004.66095.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Tsimihodimos V, Mitrogianni Z, Elisaf M. Dyslipidemia associated with chronic kidney disease. Open Cardiovasc Med J. 2011;5:41–8. doi: 10.2174/1874192401105010041.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Polak-Jonkisz D, Purzyc L, Laszki-Szczachor K, Musial K, Zwolinska D. The endogenous modulators of Ca2+–Mg2+-dependent ATPase in children with chronic kidney disease (CKD). Nephrol Dial Transplant. 2010;25(2):438–44. doi: 10.1093/ndt/gfp436.CrossRefPubMedGoogle Scholar
  4. 4.
    Pasch A, Schaffner T, Huynh-Do U, Frey BM, Frey FJ, Farese S. Sodium thiosulfate prevents vascular calcifications in uremic rats. Kidney Int. 2008;74(11):1444–53. doi: 10.1038/ki.2008.455.CrossRefPubMedGoogle Scholar
  5. 5.
    Yu Z, Gu L, Pang H, Fang Y, Yan H, Fang W. Sodium thiosulfate: an emerging treatment for calciphylaxis in dialysis patients. Case Rep Nephrol Dial. 2015;5(1):77–82. doi: 10.1159/000380945.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baldev N, Sriram R, Prabu PC, Kurian Gino A. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model. Int Braz J Urol. 2015;41(6):1116–25. doi: 10.1590/S1677-5538.IBJU.2014.0585.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Subhash N, Sriram R, Kurian GA. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification. Neurochem Int. 2015;90:193–203. doi: 10.1016/j.neuint.2015.09.004.CrossRefPubMedGoogle Scholar
  8. 8.
    Yokozawa T, Zheng PD, Oura H. Biochemical features induced by adenine feeding in rats. Polyuria, electrolyte disorders, and 2, 8-dihydroxyadenine deposits. J Nutr Sci Vitaminol. 1984;30(3):245–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Marchesi VT, Palade GE. The localization of Mg–Na–K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967;35(2):385–404.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Goldblith SA, Proctor BE. Photometric determination of catalase activity. J Biol Chem. 1950;187(2):705–9.PubMedGoogle Scholar
  12. 12.
    Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205.CrossRefPubMedGoogle Scholar
  13. 13.
    Nandi A, Chatterjee IB. Assay of superoxide dismutase activity in animal tissues. J Biosci. 1988;13(3):305–15. doi: 10.1007/BF02712155.CrossRefGoogle Scholar
  14. 14.
    Touyz RM, Milne FJ, Reinach SG. Platelet and erythrocyte Mg2+, Ca2+, Na+, K+ and cell membrane adenosine triphosphatase activity in essential hypertension in blacks. J Hypertens. 1992;10(6):571–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Cyrus H, Fiske YS. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:27.Google Scholar
  16. 16.
    Widnell CC. Cytochemical localization of 5′-nucleotidase in subcellular fractions isolated from rat liver. I. The origin of 5′-nucleotidase activity in microsomes. J Cell Biol. 1972;52(3):542–58.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol CJASN. 2015;10(7):1257–72. doi: 10.2215/CJN.09750913.CrossRefPubMedGoogle Scholar
  18. 18.
    Kronon M, Bolling KS, Allen BS, Rahman S, Wang T, Halldorsson A, et al. The relationship between calcium and magnesium in pediatric myocardial protection. J Thorac Cardiovasc Surg. 1997;114(6):1010–9. doi: 10.1016/S0022-5223(97)70015-1.CrossRefPubMedGoogle Scholar
  19. 19.
    Pesi R, Baiocchi C, Tozzi MG, Camici M. Synergistic action of ADP and 2, 3-bisphosphoglycerate on the modulation of cytosolic 5′-nucleotidase. Biochim Biophys Acta. 1996;1294(2):191–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Bianchi G, Vezzoli G, Cusi D, Cova T, Elli A, Soldati L, et al. Abnormal red-cell calcium pump in patients with idiopathic hypercalciuria. N Engl J Med. 1988;319(14):897–901. doi: 10.1056/NEJM198810063191402.CrossRefPubMedGoogle Scholar
  21. 21.
    Rohn TT, Hinds TR, Vincenzi FF. Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol. 1993;46(3):525–34.CrossRefPubMedGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2016

Authors and Affiliations

  • Ramya Ramani
    • 1
  • Abirami Ramachandran
    • 1
  • Sriram Ravindran
    • 2
  • Gino A. Kurian
    • 2
  1. 1.School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia
  2. 2.Vascular Biology LabSASTRA UniversityThanjavurIndia

Personalised recommendations