Indian Journal of Clinical Biochemistry

, Volume 31, Issue 2, pp 215–223 | Cite as

Circadian Time Structure of Circulating Plasma Lipid Components in Healthy Indians of Different Age Groups

  • Ranjana SinghEmail author
  • Sumita Sharma
  • Raj K. Singh
  • Germaine Cornelissen
Original Article


The circadian rhythm of human circulating lipid components was studied under nearnormal tropical conditions in 162 healthy volunteers (103 males and 59 females; 7 to 75 years of age). They followed a diurnal activity from about 06:00 to about 22:00 and nocturnal rest. These volunteers were divided into four groups: Group A (7–20 years), Group B (21–40 years), Group C (41–60 years) and Group D (61–75 years), comprising 42, 60, 35 and 25 participants, respectively. A marked circadian rhythm was demonstrated for each studied variable in each group by population-mean cosinor analysis (almost invariably p < 0.001). Furthermore, circadian rhythm characteristics were compared among the 4 groups by parameter tests and regressed as a function of age, separately for males and females. A second-order polynomial characterized the MESOR of HDL cholesterol, phospholipids and total lipids, as well as the 24-h amplitude of total cholesterol and phospholipids. The 24-h amplitude of total lipids decreased linearly with age. The 24-h acrophase of the oldest age group (Group D) was advanced in the case of total cholesterol, HDL cholesterol, and total lipids, whereas that of phospholipids was delayed. Mapping the circadian rhythm (an important component of the broader time structure or chronome, which includes a. o., trends with age and extra-circadian components) of lipid components is needed to explore their role in the aging process in health.


Circadian time structure Cholesterol Phospholipids Total lipids Healthy population Aging process 


Compliance with Ethical Standards

Conflict of interest



  1. 1.
    Liu JY, Li N, Yang J, Li N, Qiu H, Ai D, et al. Metabolic profiling of murine plasma reveals an unexpected biomarker in rofecoxib-mediated cardiovascular events. Proc Natl Acad Sci USA. 2010;107:17017–22.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vouk K, Hevir N, Ribic´-Pucelj M, Haarpaintner G, Scherb H, Osredkar J, et al. Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Hum Reprod. 2012;27:2955–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Sato Y, Suzuki I, Nakamura T, Bernier F, Aoshima K, Oda Y. Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. J Lipid Res. 2012;53:567–76.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Seijo S, Lozano JJ, Alonso C, Reverter E, Miquel R, Abraldes JG, et al. Metabolomics discloses potential biomarkers for the noninvasive diagnosis of idiopathic portal hypertension. Am J Gastroenterol. 2013;108:929–32.CrossRefGoogle Scholar
  5. 5.
    Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakarukawa T, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281:16768–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Beger RD, Sun J, Schnackenberg LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243:154–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Parman T, Bunin DI, Ng HH, McDunn JE, Wulff JE, Wang A, et al. Toxicogenomics and metabolomics of pentamethylchromanol (PMCol)-induced hepatotoxicity. Toxicol Sci. 2011;124:487–501.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McClay JL, Adkins DE, Vunck SA, Batman AM, Vann RE, Clark SL, et al. Large scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure. Metabolomics. 2013;9:392–402.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Han X, Gross S. Shotgun lipidomics: electrospray ionization mass spectrometri analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005;24:367–412.CrossRefPubMedGoogle Scholar
  10. 10.
    Taguchi R, Nishijima M, Shimizu T. Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol. 2007;432:185–211.CrossRefPubMedGoogle Scholar
  11. 11.
    Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signaling lipid. Nat Rev Mol Cell Biol. 2003;4:397–407.CrossRefPubMedGoogle Scholar
  12. 12.
    Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual antiinflammatoryand pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–61.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, Bayir H. Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem. 2010;115:1322–36.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011;6:e21643.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol. 2012;8:615.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Demirkan A, Isaacs A, Uqocsai P, Liebisch G, Struchalin M, Rudan I, et al. Plasmaphosphatidylcholine and sphingomyelin concentrations are associated withdepression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res. 2013;47:357–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acid Res. 2013;41:D801–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rivera-Coll A, Fuentes-Arderiu X, Díez-Noguera A. Circadian rhythmic variations in serum concentrations of clinically important lipids. Clin Chem. 1994;40:1549–53.PubMedGoogle Scholar
  19. 19.
    Kessler Cella L, Van Cauter E, Schoeller DA. Diurnal rhythmicity of human cholesterol synthesis: normal pattern and adaptation to simulated “jet lag”. Am J Physiol. 1995;269:E489–98.Google Scholar
  20. 20.
    Kessler Cella L, Van Cauter E, Schoeller DA. Effect of meal timing on diurnal rhythm of human cholesterol synthesis. Am J Physiol. 1995;269:E878–80.Google Scholar
  21. 21.
    Singh RK, Wu J, Zhou S, Halberg F. Circadian rhythmic human circulating cholesterol in health, during fasting and on vegetarian vs. omnivorous diets. Chronobiologia. 1989;16:183.Google Scholar
  22. 22.
    Singh RK, Mahdi AA, Singh AK, Bansal SK, Wu J, Zhou S, Halberg F. Circadian variation of human circulating cholesterol components on vegetarian and omnivorous diets in healthy Indians. Indian J Clin Biochem. 1992;7:185–92.CrossRefGoogle Scholar
  23. 23.
    Cornelissen G, Galli C, Halberg F, Meester FDE, Rise P, Wilczynska-Kwiatek A, et al. Circadian time structure of fatty acids and vascular monitoring. J Applied Biomed. 2010;8:93–109.CrossRefGoogle Scholar
  24. 24.
    Halberg F. Chronobiology: methodological problems. Acta Med Rom. 1980;18:399–440.Google Scholar
  25. 25.
    Cornelissen G, Halberg F. Chronomedicine. In: Armitage P, Colton T, editors. Encyclopedia of biostatistics. 2nd ed. Chichester: Wiley; 2005. pp. 796–812.Google Scholar
  26. 26.
    Refinetti R, Cornelissen G, Halberg F. Procedures for numerical analysis of circadian rhythms. Biological Rhythm Res. 2007;38(4):275–325.CrossRefGoogle Scholar
  27. 27.
    Cornelissen G. Cosinor-based rhythmometry. Theoretical Biology and Medical Modelling. 2014;11:16–40. doi: 10.1186/1742-4682-11-16.24.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bingham C, Arbogast B, Cornelissen G, Lee JK, Halberg F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia. 1982;9:397–439.PubMedGoogle Scholar
  29. 29.
    Isabelle C, Josaiane S, Thomas M, Gerard S. Variations in total phospholipid and HDL-phospholipids in plasma from a general population: reference intervals and influence of xenobiotics. Clin Chem. 1985;31(5):763–6.Google Scholar
  30. 30.
    Kochhar S, Doris M. Jacobs, Ziad Ramadan. Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics. Anal Biochem. 2006;352(2):274–81.CrossRefPubMedGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2015

Authors and Affiliations

  • Ranjana Singh
    • 1
    Email author
  • Sumita Sharma
    • 2
  • Raj K. Singh
    • 2
  • Germaine Cornelissen
    • 3
  1. 1.Biochemistry DepartmentKing George’s Medical UniversityLucknowIndia
  2. 2.Biochemistry DepartmentSGRR Institute of Medical & Health SciencesDehradunIndia
  3. 3.Halberg Chronobiology CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations