Indian Journal of Clinical Biochemistry

, Volume 30, Issue 1, pp 11–26 | Cite as

Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases

  • Alugoju Phaniendra
  • Dinesh Babu Jestadi
  • Latha Periyasamy
Review Article

Abstract

Free radicals and other oxidants have gained importance in the field of biology due to their central role in various physiological conditions as well as their implication in a diverse range of diseases. The free radicals, both the reactive oxygen species (ROS) and reactive nitrogen species (RNS), are derived from both endogenous sources (mitochondria, peroxisomes, endoplasmic reticulum, phagocytic cells etc.) and exogenous sources (pollution, alcohol, tobacco smoke, heavy metals, transition metals, industrial solvents, pesticides, certain drugs like halothane, paracetamol, and radiation). Free radicals can adversely affect various important classes of biological molecules such as nucleic acids, lipids, and proteins, thereby altering the normal redox status leading to increased oxidative stress. The free radicals induced oxidative stress has been reported to be involved in several diseased conditions such as diabetes mellitus, neurodegenerative disorders (Parkinson’s disease-PD, Alzheimer’s disease-AD and Multiple sclerosis-MS), cardiovascular diseases (atherosclerosis and hypertension), respiratory diseases (asthma), cataract development, rheumatoid arthritis and in various cancers (colorectal, prostate, breast, lung, bladder cancers). This review deals with chemistry, formation and sources, and molecular targets of free radicals and it provides a brief overview on the pathogenesis of various diseased conditions caused by ROS/RNS.

Keywords

Free radicals Reactive oxygen species (ROS) Reactive nitrogen species (RNS) Oxidative stress 

References

  1. 1.
    Gomberg M. An Incidence of Trivalent Carbon Trimethylphenyl. J Am Chem Soc. 1900;22:757–71.Google Scholar
  2. 2.
    Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and x-irradiation-A mechanism in common. Science. 1954;119:623–6.PubMedGoogle Scholar
  3. 3.
    Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature. 1954;174(4432):689–91.PubMedGoogle Scholar
  4. 4.
    McCord JM, Fridovich I. Superoxide dismutase an enzymatic function for erythrocuprein (chemocuprein). J Biol Chem. 1969;244(22):6049–55.PubMedGoogle Scholar
  5. 5.
    Loschen G, Flohe L, chance B. Respiratory chain linked H O production in pigeon heart mitochondria. FEBS Lett. 1971;18(2):261–4.PubMedGoogle Scholar
  6. 6.
    Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem. 1978;82:563–7.PubMedGoogle Scholar
  7. 7.
    Mittal CK, Murad F. Activation of guanylate cyclase by superoxide-dismutase and hydroxyl radical-Physiological regulator of guanosine 3′,5′-monophosphate formation. Proc Natl Acad Sci USA. 1977;74(10):4360–4.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon Press; 1989.Google Scholar
  9. 9.
    Mukherji SM, Singh SP. Reaction mechanism in organic chemistry. Madras: Macmillan IndiaPress; 1986.Google Scholar
  10. 10.
    Pham-Huy LA, Hua He, Pham-Huy C. Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci. 2008;4(2):89–96.Google Scholar
  11. 11.
    Valko M, Leibfritz D, Moncola J, Cronin MT, Mazura M, Telser J. Review Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.PubMedGoogle Scholar
  12. 12.
    Nordberg J, Arner EJ. Reactive oxygen species, antioxidants, and the mammalian Thioredoxin system. Free Radical Biol Med. 2001;31(11):1287–312.Google Scholar
  13. 13.
    Yla-Herttuala S. Oxidized LDL and atherogenesis. Ann N Y Acad Sci. 1999;874:134–7.PubMedGoogle Scholar
  14. 14.
    Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci. 2000;899:191–208.PubMedGoogle Scholar
  15. 15.
    Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361–70.PubMedGoogle Scholar
  16. 16.
    Kohen R, Nyska A. Invited review Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol Pathol. 2002;30(6):620–50.PubMedGoogle Scholar
  17. 17.
    Halliwell B. Free Radicals and other reactive species in disease. Nature Encyclopedia of life sciences. 2001. p. 1–7.Google Scholar
  18. 18.
    Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Review Cell Signal. 2007;19(9):1807–19.Google Scholar
  19. 19.
    Mugoni V, Santoro MM. Manipulating redox signaling to block tumor angiogenesis, research directions in tumor angiogenesis, Dr. Jianyuan Chai (Ed.), ISBN: 978-953-51-0963-1, InTech, 2013. doi: 10.5772/54593.
  20. 20.
    Michelson AM, McCord JM, Fridovich I. Superoxide and Superoxide Dismutases. London: Academic Press; 1977. p. 320.Google Scholar
  21. 21.
    Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem. 1989;264(17):9880–4.PubMedGoogle Scholar
  22. 22.
    Kontos HA, Wei EP, Ellis EF, Jenkins LW, Povlishock JT, Rowe GT, et al. Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res. 1985;57(1):142–51.PubMedGoogle Scholar
  23. 23.
    McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension. Hypertension. 1999;34:539–45.PubMedGoogle Scholar
  24. 24.
    Bielski BHJ, Cabelli DE. Superoxide and hydroxyl radical chemistry in aqueous solution. Active Oxygen in Chemistry. 1996;66–104.Google Scholar
  25. 25.
    Bielski BHJ, Cabelli BH, Arudi RL, Ross AB. Reactivity of RO2/O2. Radicals in aqueous solution. J Phys Chem Ref Data. 1985;14:1041–100.Google Scholar
  26. 26.
    Bedwell S, Dean RT, Jessup W. The action of defined oxygen centred free radicals on human low density lipoprotein. Biochem J. 1989;262(3):707–12.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987;1(5):358–64.PubMedGoogle Scholar
  28. 28.
    Fenton HJH. Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans. 1894;65:899–910.Google Scholar
  29. 29.
    Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London (A). 1934;147:332–51.Google Scholar
  30. 30.
    De Grey ADNJ. HO2˙: the forgotten radical. DNA Cell Biol. 2002;21:251–7.PubMedGoogle Scholar
  31. 31.
    Cerruti PA. Pro-oxidant states and tumor activation. Science. 1985;227:375–81.Google Scholar
  32. 32.
    Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486(1):10–3.PubMedGoogle Scholar
  33. 33.
    Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603.PubMedGoogle Scholar
  34. 34.
    Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol. 1999;300:219–26.PubMedGoogle Scholar
  35. 35.
    Hojo Y, Okado A, kawazoe S, Mizutani T. In vivo singlet-oxygen generation in blood of chromium(VI)-treated mice an electron spin resonance spin-trapping study. Biol Trace Elem Res. 2000;76(1):85–93.PubMedGoogle Scholar
  36. 36.
    Agnez-Lima LF, Melo JT, Silva AE, Oliveira AH, Timoteo AR, Lima-Bessa KM, et al. Review DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res. 2012;751(1):1–14.Google Scholar
  37. 37.
    Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.PubMedGoogle Scholar
  38. 38.
    Kanovasky JR. Singlet oxygen production by biological systems. Chem Biol Interact. 1989;70(1–2):1–28.Google Scholar
  39. 39.
    Chan HWS. Singlet oxygen analogs in biological systems: coupled oxygenation of 1,3-dienes by soybean lipoxidase. J Am Chem Soc. 1971;93(9):2357–8.Google Scholar
  40. 40.
    Hayaishi O, Nozaki M. Nature and mechanisms of oxygenases. Science. 1969;164:389–96.PubMedGoogle Scholar
  41. 41.
    Kanofsky JR. Singlet oxygen production by lactoperoxidase. J Biol Chem. 1983;258(10):5991–3.PubMedGoogle Scholar
  42. 42.
    Sies H, Menck CF. Singlet oxygen induced DNA damage. Mutat Res. 1992;275:367–75.PubMedGoogle Scholar
  43. 43.
    Lerner RA, Eschenmoser A. Ozone in biology. Proc Natl Acad Sci USA. 2003;100(6):3013–5.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Goldstein BD, Lodi C, Collinson C, Balchum OJ. Ozone and lipid peroxidation. Arch Environ Heath. 1969;18:631–5.Google Scholar
  45. 45.
    Freeman BA, Mudd JB. Reaction of ozone with sulfhydryls of human erythrocytes. Arch Biochem Biophys. 1981;208(1):212–20.PubMedGoogle Scholar
  46. 46.
    Mudd JB, Leavitt R, Ongun A, McManus TT. Reaction of ozone with amino acids and proteins. Atmos Environ. 1969;3:669–81.PubMedGoogle Scholar
  47. 47.
    Mustafa MG. Biochemical Basis of Ozone Toxicity. Free Radical Biol Med. 1990;9:245–65.Google Scholar
  48. 48.
    Fetner RH. Ozone induced chromosome breakage in human cell culture. Nature. 1962;194:793–4.PubMedGoogle Scholar
  49. 49.
    Winterbourn CC, Kettle AJ. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med. 2000;29(5):403–9.PubMedGoogle Scholar
  50. 50.
    Albrich JM, McCarthy CA, Hurst JK. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci USA. 1981;78(1):210–4.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Winterbourn CC. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985;840(2):204–10.PubMedGoogle Scholar
  52. 52.
    Prutz WA. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys. 1996;332(1):110–20.PubMedGoogle Scholar
  53. 53.
    Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43(3):521–31.PubMedGoogle Scholar
  54. 54.
    Chiueh CC. Neuroprotective properties of nitric oxide. Ann N Y Acad Sci. 1999;890:301–11.PubMedGoogle Scholar
  55. 55.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chandhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–9.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25(4–5):434–56.PubMedGoogle Scholar
  57. 57.
    Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994;78(6):931–6.PubMedGoogle Scholar
  58. 58.
    Koshland DE Jr. The molecule of the year. Science. 1992;258(5090):1861.PubMedGoogle Scholar
  59. 59.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424–37.PubMedGoogle Scholar
  60. 60.
    Douki H, Cadet J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Rad Res. 1996;24(5):369–80.Google Scholar
  61. 61.
    Ischiropoulos H, Al-Mehdi AB. Peroxynitrite mediated oxidative protein modifications. FEBS Lett. 1995;364(3):279–82.PubMedGoogle Scholar
  62. 62.
    Czapski G, Goldstein S. The role of the reactions of NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med. 1995;19(6):785–94.PubMedGoogle Scholar
  63. 63.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.PubMedGoogle Scholar
  64. 64.
    Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci. 2008;1147:37–52.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221–33.PubMedGoogle Scholar
  66. 66.
    De Duve C, Bauduhuin P. peroxisomes (microbodies and related particles). Physiol Rev. 1966;46:323–57.PubMedGoogle Scholar
  67. 67.
    Schrader M, Fahimi HD. Review Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–66.PubMedGoogle Scholar
  68. 68.
    Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.PubMedGoogle Scholar
  69. 69.
    Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, et al. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Nat Acad Sci USA. 2006;103(2):299–304.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Droge W. Review Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.PubMedGoogle Scholar
  71. 71.
    Halliwell B, Gutteridge JM. Free radicals in biology and medicine, vol. Third edition. Midsomer Norton: Oxford University Press; 1999.Google Scholar
  72. 72.
    Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radical Biol Med. 2002;32(11):1102–15.Google Scholar
  73. 73.
    Barja G. The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging (Milano). 2000;12(5):342–55.PubMedGoogle Scholar
  74. 74.
    Hiraku Y, Kawanishi S, Ichinose T, Murata M. The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann NY Acad Sci. 2010;1203:15–22.PubMedGoogle Scholar
  75. 75.
    Yermilov V, Rubio J, Ohshima H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 1995;376(3):207–10.PubMedGoogle Scholar
  76. 76.
    Loeb LA, Preston BD. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–30.PubMedGoogle Scholar
  77. 77.
    Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem. 2005;386(4):333–7.PubMedGoogle Scholar
  78. 78.
    Abe T, Tohgi H, Isobe C, Murata T, Sato C. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J Neurosci Res. 2002;70(3):447–50.PubMedGoogle Scholar
  79. 79.
    Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis. 2002;9(2):244–8.PubMedGoogle Scholar
  80. 80.
    Martinet W, de Meyer GR, Herman AG, Kockx MM. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest. 2004;34(5):323–7.PubMedGoogle Scholar
  81. 81.
    Broedbaek K, Poulsen HE, Weimann A, Kom GD, Schwedhelm E, Nielsen P, et al. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radical Biol Med. 2009;47(8):1230–3.Google Scholar
  82. 82.
    Tateyama M, Takeda A, Onodera Y, Matsuzaki M, Hasegawa T, Nunomura A, et al. Oxidative stress and predominant Abeta 42 (43) deposition in myopathies with rimmed vacuoles. Acta Neuropathol. 2003;105(6):581–5.PubMedGoogle Scholar
  83. 83.
    Siems WG, Grune T, Esterbauer H. 4-Hydroxynonenal formation during ischemia and reperfusion of rat small-intestine. Life Sci. 1995;57(8):785–9.PubMedGoogle Scholar
  84. 84.
    Bast A. Oxidative stress and calcium homeostasis. In: Halliwell B, Aruoma OI, editors. DNA and free radicals. London: Ellis Horwood; 1993. p. 95–108.Google Scholar
  85. 85.
    Marnett LJ. Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res. 1999;424(1–2):83–95.PubMedGoogle Scholar
  86. 86.
    Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil chem Soc. 1998;75(2):199–212.Google Scholar
  87. 87.
    Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324:1–18.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K, et al. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci. 1998;854:448–62.PubMedGoogle Scholar
  89. 89.
    Brodie E, Reed DJ. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxide. Arch Biochem Biophys. 1990;276(1):210–2.Google Scholar
  90. 90.
    Pryor WA, Jin X, Squadrito GL. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA. 1994;91(23):11173–7.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Berlett BS, Stadtman E. Protein oxidation in aging, disease, and oxidative stress. J Bio Chem. 1997;272(33):20313–6.Google Scholar
  92. 92.
    Kikugawa K, Kato T, Okamoto Y. Damage of amino acids and proteins induced by nitrogen dioxide, a free radical toxin, in air. Free Rad Biol Med. 1994;16(3):373–82.PubMedGoogle Scholar
  93. 93.
    Uchida K, Kawakishi S. 2-oxohistidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 1993;332(3):208–10.PubMedGoogle Scholar
  94. 94.
    Garrison WM. Reaction mechanisms in radiolysis of peptides, polypeptides, and proteins. Chem Rev. 1987;8792:381–98.Google Scholar
  95. 95.
    Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res. 2000;33:S99–108.PubMedGoogle Scholar
  96. 96.
    Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA. 1991;88(23):10540–3.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;7091:268–75.Google Scholar
  98. 98.
    Murphy ME, Kehrer JP. Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem J. 1989;260(2):359–64.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Garland D, Russell P, Zigler JS. Oxidative modification of lens proteins. Basic Life Sci. 1988;49:347–53.PubMedGoogle Scholar
  100. 100.
    Chapman ML, Rubin BR, Gracy RW. Increased carbonyl content of proteins in synovial fluid from patients with rhematoid arthritis. J Rheumatol. 1989;16(1):15–8.PubMedGoogle Scholar
  101. 101.
    Jones RH, Hothersall JS. The effect of diabetes and dietary ascorbate supplementation on the oxidative modification of rat lens beta L crystallin. Biochem Med Metab Biol. 1993;50(2):197–209.PubMedGoogle Scholar
  102. 102.
    Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem. 1987;262(12):5488–91.PubMedGoogle Scholar
  103. 103.
    Gavin JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.Google Scholar
  104. 104.
    Oberley LW. Free radicals and diabetes. Free Radic Biol Med. 1988;5(2):113–24.PubMedGoogle Scholar
  105. 105.
    Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27–71.PubMedGoogle Scholar
  106. 106.
    Ahmed RG. The physiological and biochemical Effects of diabetes on the balance between oxidative stress and Antioxidant defense system. Med J Islam World Acad Sci. 2005;15(1):31–42.Google Scholar
  107. 107.
    Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350(1):118–26.PubMedGoogle Scholar
  108. 108.
    Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab. 2012;2:S267–71.Google Scholar
  109. 109.
    Pollack M, Leeuwenburgh C. Molecular mechanisms of oxidative stress in aging: free radicals, aging, antioxidants and disease. Elsevier Science B.V. Handbook of Oxidants and Antioxidants in Exercise. 1999;881–923.Google Scholar
  110. 110.
    Rivas-Arancibia S, Guevara-Guzmán R, López-Vidal Y, Rodríguez-Martínez E, Zanardo-Gomes M, Angoa-Pérez M, et al. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci. 2010;113(1):187–97.PubMedGoogle Scholar
  111. 111.
    Santiago-López JA, Bautista-Martínez CI, Reyes-Hernandez M, Aguilar-Martínez S, Rivas- Arancibia S. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol Lett. 2010;197(3):193–200.PubMedGoogle Scholar
  112. 112.
    Pan XD, Zhu YG, Lin N, Zhang J, Ye QY, Huang HP, Chen XC. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer’s disease. Mol Neurodegener. 2011;6(45):1–17.Google Scholar
  113. 113.
    Sevcsik E, Trexler AJ, Dunn JM, Rhoades E. Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc. 2011;133(18):7152–8.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Zhao W, Varghese M, Yemul S, Pan Y, Cheng A, Marano P, et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2011;6(1):1–8.Google Scholar
  115. 115.
    Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis. 2010;1–11.Google Scholar
  116. 116.
    Fisher LJ, Gage FH. Radical directions in Parkinson’s disease. Nat Med. 1995;1(3):201–3.PubMedGoogle Scholar
  117. 117.
    Olivieri S, Conti A, Iannaccone S, Cannistraci CV, Campanella A, Barbariga M, et al. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci. 2011;31:18568–77.PubMedGoogle Scholar
  118. 118.
    Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50.PubMedGoogle Scholar
  119. 119.
    Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, et al. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE. 2008;3(8):1–19.Google Scholar
  120. 120.
    Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases. A Review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci. 2008;274(1–2):48–53.PubMedGoogle Scholar
  122. 122.
    Mitosek-Szewczyk K, Gordon-Krajcer W, Walendzik P, Stelmasiak Z. Free radical peroxidation products in cerebrospinal fluid and serum of patients with multiple sclerosis after glucocorticoid therapy. Folia Neuropathol. 2010;48(2):116–22.PubMedGoogle Scholar
  123. 123.
    Goldstein BD, Witz G. Free radicals and carcinogenesis. Free Radic Res Commum. 1990;11(1–3):3–10.Google Scholar
  124. 124.
    Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996;32A(1):30–8.PubMedGoogle Scholar
  125. 125.
    Acuna UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, De Blanco EJ. Effects of (5Z)-7-Oxozeaenol on the Oxidative pathway of cancer cells. Anticancer Res. 2012;32(7):2665–71.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Cairns RA, Harris I, McCracken S, Mak TW. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:299–311.PubMedGoogle Scholar
  127. 127.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal hitological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.PubMedGoogle Scholar
  128. 128.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1–2):37–56.PubMedGoogle Scholar
  129. 129.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedGoogle Scholar
  130. 130.
    Blau S, Rubinstein A, Bass P, Singaram C, Kohen R. Differences in the reducing power along the rat GI tract: lower antioxidant capacity of the colon. Mol Cell Biochem. 1999;194(1–2):185–91.PubMedGoogle Scholar
  131. 131.
    Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, et al. Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med. 2004;37(9):1449–54.PubMedGoogle Scholar
  132. 132.
    Haklar G, Sayin-Ozveri E, Yuksel M, Aktan AO, Yalcin AS. Different kinds of reactive oxygen and nitrogen species were detected in colon and breast tumors. Cancer Lett. 2001;165(2):219–24.PubMedGoogle Scholar
  133. 133.
    Guz J, Foksinski M, Siomek A, Gackowski D, Rozalski R, Dziaman T, et al. The relationship between 8-oxo-7,8-dihydro-2-deoxyguanosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res. 2008;640(1–2):170–3.PubMedGoogle Scholar
  134. 134.
    Rainis T, Maor I, Lanir A, Shnizer S, Lavy A. Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci. 2007;52(2):526–30.PubMedGoogle Scholar
  135. 135.
    Suzuki K, Ito Y, Wakai K, Kawado M, Hashimoto S, Toyoshima H, et al. Serum oxidized low-density lipoprotein levels and risk of colorectal cancer: a case-control study nested in the Japan Collaborative Cohort Study. Cancer Epidemiol Biomark Prev. 2004;13(11):1781–7.Google Scholar
  136. 136.
    Murrell TG. Epidemiological and biochemical support for a theory on the cause and prevention of breast cancer. Med Hypotheses. 1991;36(4):389–96.PubMedGoogle Scholar
  137. 137.
    Brown NS, Jones A, Fujiyama C, Harris AL, Bicknell R. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res. 2000;60(22):6298–302.PubMedGoogle Scholar
  138. 138.
    Sipe HJ Jr, Jordan SJ, Hanna PM, Mason RP. The metabolism of 17 beta-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer. Carcinogenesis. 1994;15(11):2637–43.PubMedGoogle Scholar
  139. 139.
    Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, et al. Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. Am J Pathol. 2007;171(6):2021–32.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, et al. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate. 2005;62(2):200–7.PubMedGoogle Scholar
  141. 141.
    Brar SS, Corbin Z, Kennedy TP, Hemendinger R, Thornton L, Bommarius B, et al. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol. 2003;285(2):C353–69.PubMedGoogle Scholar
  142. 142.
    Kumar B, Koul S, Khandrika L, Measchan RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008;68:1777–85.PubMedGoogle Scholar
  143. 143.
    Veeramani S, Yuan TC, Lin FF, Lin MF. Mitochondrial redox signaling by p66Shc in involved in regulating androgenic growth stimulation of human prostate cancer cell. Oncogene. 2008;27(37):5057–68.PubMedCentralPubMedGoogle Scholar
  144. 144.
    WHO World cancer Report 2008. In: Boyle P, Levin B, editors. Lung cancer, 12. Chapter 5.10.Google Scholar
  145. 145.
    Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health. 2008;11(1):1–15.Google Scholar
  146. 146.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedGoogle Scholar
  147. 147.
    Hoagland LF 4th, Campa MJ, Gottlin EB, Herndon 2nd JE, Patz Jr EF. Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer. Cancer. 2007;110(10):2260–2268.Google Scholar
  148. 148.
    Pastora MD, Nogala A, Molina-Pineloa S, Meléndeza R, Salinasa A, González De la Penaa M, et al. Identification of proteomic signatures associated with lung cancer and COPD. J Proteomics. 2013;89:227–37.Google Scholar
  149. 149.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2007;57:43–6.PubMedGoogle Scholar
  150. 150.
    Wynder EL, Goldsmith R. The epidemiology of bladder cancer: a second look. Cancer. 1977;40:1246–68.PubMedGoogle Scholar
  151. 151.
    Opanuraks J, Boonla C, Saelim C, Kittikowit W, Sumpatanukul P, Honglertsakula C, et al. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian Biomedicine. 2010;4(5):703–10.Google Scholar
  152. 152.
    Opanuraks J, Boonla C, Saelim C, Kittikowit W, Sumpatanukul P, Honglertsakula C, Tosukhowong P. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian Biomedicine. 2010;4(5):703–10.Google Scholar
  153. 153.
    Soini Y, Haapasaari KM, Vaarala MH, Turpeenniemi-Hujanen T, Karja V, Karihtala P. 8-hydroxydeguanosine and nitrotyrosine are prognostic factors in urinary bladder carcinoma. Int J Clin Exp Pathol. 2011;4(3):267–75.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Eijan AM, Piccardo I, Riveros MD, Sandes EO, Porcella H, Jasnis MA, et al. Nitric oxide in patients with transitional bladder cancer. J Surg Oncol. 2002;81:203–8.PubMedGoogle Scholar
  155. 155.
    Gecit I, Aslan M, Gunes M, Pirincci N, Esen R, Demir H, et al. Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer. J Cancer Res Clin Oncol. 2012;138(5):739–43.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Ellidag HY, Eren E, Aydın O, Akgol E, Yalcınkaya S, Sezer C, et al. Ischemia Modified Albumin Levels and Oxidative Stress in Patients with Bladder Cancer. Asian Pacific J Cancer Prev. 2013;14(5):2759–63.Google Scholar
  157. 157.
    Yılmaz IA, Akçay T, Çakatay U, Telci A, Ataus S, Yalcin V. Relation between bladder cancer and protein oxidation. ˙. Int Urol Nephrol. 2003;35(3):345–50.PubMedGoogle Scholar
  158. 158.
    DeMarchi E, B Faldassari, Bononi A, Wieckowski MR, Pinton P. Oxidative Stress in Cardiovascular Diseases and Obesity: Role of p66Shc and Protein Kinase C Oxidative Medicine and Cellular Longevity. 2013;1-11. Review.Google Scholar
  159. 159.
    Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, Choi ET, et al. Inflammasomes: sensors of metabolic stresses for vascular inflammation. Front Biosci. 2013;18:638–49.Google Scholar
  160. 160.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.PubMedGoogle Scholar
  161. 161.
    Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med. 2007;17(2):48–54.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996;98(11):2572–9.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation. 2005;111(20):2684–98.PubMedGoogle Scholar
  164. 164.
    Yang Z, Ming XF. Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res. 2006;4(1):53–65.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Botto N, Rizza A, Colombo MG, Mazzone AM, Manfredi S, Masetti S, et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001;493(1–2):23–30.PubMedGoogle Scholar
  166. 166.
    Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1–6.Google Scholar
  167. 167.
    Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome novelty and significance. Circ Res. 2010;107:1021–31.PubMedCentralPubMedGoogle Scholar
  168. 168.
    A global brief on hypertension. World health day 2013. WHO.Google Scholar
  169. 169.
    Zalba G, Jose GS, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, et al. Oxidative stress in arterial hypertension role of NAD(P)H oxidase. Hypertension. 2001;38(6):1395–9.PubMedGoogle Scholar
  170. 170.
    Dzau VJ. Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension. 2001;37:1047–52.PubMedGoogle Scholar
  171. 171.
    Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248–52.PubMedGoogle Scholar
  172. 172.
    Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease. Braz J Med Biol Res. 2004;37(8):1263–73.PubMedGoogle Scholar
  173. 173.
    Hashim Z, Zarina S. Osmotic stress induced oxidative damage: Possible mechanism of cataract formation in diabetes. J Diabetes Complicat. 2012;26(4):275–9.PubMedGoogle Scholar
  174. 174.
    Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ. 1995;73(1):115–21.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Nagai N, Fukuhata T, Ito Y. Effect of magnesium deficiency on intracellular ATP Levels in human lens epithelial cells. Biol Pharm Bull. 2007;30(1):6–10.PubMedGoogle Scholar
  176. 176.
    Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 2010;44(3):155–65.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Berthoud VM, Beyer EC. Forum review article oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 2009;11(2):339–53.PubMedCentralPubMedGoogle Scholar
  178. 178.
    Bhuyan KC, Bhuyan DK, Podos SM. Lipid peroxidation in cataract of the human. Life Sci. 1986;38(16):1463–71.PubMedGoogle Scholar
  179. 179.
    Gupta SK, Trivedi D, Srivastava S, Joshi S, Halder N, Verma SD. Lycopene attenuates oxidative stress induced experimental cataract development: an in vitro and in vivo study. Nutrition. 2003;19(9):794–9.PubMedGoogle Scholar
  180. 180.
    Boettner EH, Walter JR. Transmission of the ocular media. GPO Invest Ophthalmol Vis Sci. 1962;1:776–83.Google Scholar
  181. 181.
    Krishna CM, Uppuluri S, Riesz P, Zigler JS Jr, Balasubramian D. A study of the photodynamic efficiencies of some eye lens constituents. Photochem Photobiol. 1991;54(1):51–8.PubMedGoogle Scholar
  182. 182.
    Dilsiz N, Olcucu A, Atas M. Determination of calcium, sodium, potassium and magnesium concentrations in human senile cataractous lenses. Cell Biochem Funct. 2000;18(4):259–62.PubMedGoogle Scholar
  183. 183.
    David LL, Azuma M, Shearer TR. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. Invest Ophthalmol Vis Sci. 1994;35(3):785–93.PubMedGoogle Scholar
  184. 184.
    Spector A, Garner WH. Hydrogen peroxide and human cataract. Exp Eye Res. 1981;33(6):673–81.PubMedGoogle Scholar
  185. 185.
    Hapeta B, Koczy B, Fitowska A, Dobrakowski M, Kasperczyk A, Ostałowska A, et al. Metabolism and protein transformations in synovial membrane of a knee joint in the course of rheumatoid arthritis and degenerative arthritis. Pol Orthop Traumatol. 2012;77:53–8.PubMedGoogle Scholar
  186. 186.
    Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, et al. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford). 2012;51(10):1796–803.Google Scholar
  187. 187.
    Desai PB, Manjunath S, Kadi S, Chetana K, Vanishree J. Oxidative stress and enzymatic antioxidant status in rheumatoid arthritis: a case control study. Eur Rev Med Pharmacol Sci. 2010;14(11):959–67.PubMedGoogle Scholar
  188. 188.
    Grover HS, Gaba N, Gupta A, Marya CM. Rheumatoid arthritis: a review and dental care considerations. Nepal Med Coll J. 2011;13(2):74–6.PubMedGoogle Scholar
  189. 189.
    De Pablo P, Dietrich T, McAlindon TE. Association of periodontal disease and tooth loss with rheumatoid arthritis in the US population. J Rheumatol. 2008;35(1):70–6.PubMedGoogle Scholar
  190. 190.
    Vasanthi P, Nalini G, Rajasekhar G. Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis. 2009;12(1):29–33.PubMedGoogle Scholar
  191. 191.
    Hitchon CA, El-Gabalawy HS. Review Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004;6(6):265–78.PubMedCentralPubMedGoogle Scholar
  192. 192.
    Grootveld M, Henderson EB, Farell A, Blake DR, Parkes HG, Haycock P. Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal lowmolecular-mass metabolites by proton-n.m.r. spectroscopy. Biochem J. 1991;273:459–67.PubMedCentralPubMedGoogle Scholar
  193. 193.
    Rowley D, Gutteridge JM, Blake D, Farr M, Halliwell B. Lipid peroxidation in rheumatoid arthritis: thiobarbituric acid-reactive material and catalytic iron salts in synovial fluid from rheumatoid patients. Clin Sci (London). 1984;66(6):691–5.Google Scholar
  194. 194.
    Dai L, Lamb DJ, Leake DS. Evidence for oxidized low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res. 2000;32(6):479–86.PubMedGoogle Scholar
  195. 195.
    Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.PubMedGoogle Scholar
  196. 196.
    Dai L, Lamb DJ, Leake DS, Kus ML, Jones HW, Morris CJ, et al. Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res. 2000;32(6):479–86.PubMedGoogle Scholar
  197. 197.
    Costenbader KH, Karlson EW. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus. 2006;15(11):737–45.PubMedGoogle Scholar
  198. 198.
    Kottova M, Pourova J, Voprsalova M. Oxidative stress and its role in respiratory diseases. Ceska Slov Farm. 2007;56(5):215–9.PubMedGoogle Scholar
  199. 199.
    Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–78.PubMedGoogle Scholar
  200. 200.
    Chung KF. Role of inflammation in the hyper reactivity of the airways in asthma. Thorax. 1986;41:657–62.PubMedCentralPubMedGoogle Scholar
  201. 201.
    Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol Med. 1990;9(3):235–43.PubMedGoogle Scholar
  202. 202.
    Xiao M, Zhu T, Wang T, Wen FQ. Hydrogen-rich saline reduces airway remodeling via inactivation of NF-κB in a murine model of asthma. Eur Rev Med Pharmacol Sci. 2013;17(8):1033–43.PubMedGoogle Scholar
  203. 203.
    Tohyama Y, Kanazawa H, Fujiwara F, Hirata K, Fujimoto S, Yoshikawa J. Role of nitric oxide on airway microvascular permeability in patients with asthma. Osaka City Med J. 2005;51(1):1–9.PubMedGoogle Scholar
  204. 204.
    Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533(1–3):222–39.PubMedGoogle Scholar
  205. 205.
    Terada LS. Specificity in reactive oxidant signaling: Think globally, act locally. J Cell Biol. 2006;174(5):615–23.PubMedCentralPubMedGoogle Scholar
  206. 206.
    Fujisawa T. Role of oxygen radicals on bronchial asthma. Curr Drug Targets Inflamm Allergy. 2005;4(4):505–9.PubMedGoogle Scholar
  207. 207.
    Ozaras R, Tahan V, Turkmen S, Talay F, Besirli K, Aydin S, et al. Changes in malondialdehyde levels in bronchoalveolar fluid and serum by the treatment of asthma with inhaled steroid and beta2-agonist. Respirology. 2000;5(3):289–92.PubMedGoogle Scholar
  208. 208.
    Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med. 2012;7(4):226–32.PubMedCentralPubMedGoogle Scholar
  209. 209.
    Pobed’onna HP. Antioxidant protection, metabolites of nitrogen oxide on the forming of oxidative stress in patients with bronchial asthma. Lik Sprava. 2005;(5–6):36–40.Google Scholar

Copyright information

© Association of Clinical Biochemists of India 2014

Authors and Affiliations

  • Alugoju Phaniendra
    • 1
  • Dinesh Babu Jestadi
    • 1
  • Latha Periyasamy
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyPondicherry UniversityPondicherryIndia

Personalised recommendations