Advertisement

Indian Journal of Clinical Biochemistry

, Volume 28, Issue 4, pp 314–328 | Cite as

Vitamin C in Disease Prevention and Cure: An Overview

  • Shailja Chambial
  • Shailendra Dwivedi
  • Kamla Kant Shukla
  • Placheril J. John
  • Praveen Sharma
Review Article

Abstract

The recognition of vitamin C is associated with a history of an unrelenting search for the cause of the ancient haemorrhagic disease scurvy. Isolated in 1928, vitamin C is essential for the development and maintenance of connective tissues. It plays an important role in bone formation, wound healing and the maintenance of healthy gums. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. It is an antioxidant that protects body from free radical damage. It is used as therapeutic agent in many diseases and disorders. Vitamin C protects the immune system, reduces the severity of allergic reactions and helps to fight off infections. However the significance and beneficial effect of vitamin C in respect to human disease such as cancer, atherosclerosis, diabetes, neurodegenerative disease and metal toxicity however remains equivocal. Thus further continuous uninterrupted efforts may open new vistas to understand its significance in disease management.

Keywords

Vitamin C Atherosclerosis Diabetes Immunity Cancer Infertility Heavy metal toxicity 

References

  1. 1.
    Haworth WN, Hirst EL. Synthesis of ascorbic acid. J Soc Chem Ind (Lond). 1933;52:645–7.Google Scholar
  2. 2.
    Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K. Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-gamma-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J Biol Chem. 1994;269:13685–8.PubMedGoogle Scholar
  3. 3.
    Dunitz JD. Linus Carl Pauling. 28 February 1901–19 August 1994. Biographical Memoirs of Fellows of the Royal Society. 1996;42:316–8.Google Scholar
  4. 4.
    Stevenson NR, Brush MK. Existence and characteristic of Na+ dependent active transport of ascorbic acid in guinea pigs. Am J Clin Nutr. 1969;22:318.PubMedGoogle Scholar
  5. 5.
    Malo C, Wilson JX. Glucose modulates vitamin C transport in adult human small intestinal brush border membrane vesicles. J Nutr. 2000;130:63–9.PubMedGoogle Scholar
  6. 6.
    Takanga H, Mackenzie B, Hediger MA. Sodium dependent ascorbic acid transporter family SLC23. Pflugers Arch. 2004;447:677–82.Google Scholar
  7. 7.
    Stewart JS, Booth CC. Ascorbic acid absorption in malabsorption. Acta Gastroenterol Belg. 1964;27:567–8.PubMedGoogle Scholar
  8. 8.
    Ralli EP, Friedman GJ, Rubin SH. The mechanism of the excretion of vitamin C by the human kidney. J Clin Invest. 1938;17:765–70.PubMedGoogle Scholar
  9. 9.
    Nelson EW, Lane H, Fabri PJ, Scott B. Demonstration of saturation kinetics in the intestinal absorption of vitamin C in man and the guinea pig. J Clin Pharmacol. 1978;18:325–35.PubMedGoogle Scholar
  10. 10.
    MacDonald L, Thumser AE, Sharp P. Decreased expression of the vitamin C transporter SVCT1 by ascorbic acid in a human intestinal epithelial cell line. Br J Nutr. 2002;87(20):97–100.PubMedGoogle Scholar
  11. 11.
    Wilson JX. Regulation of vitamin C transport. Ann Rev Nutr. 2005;25:105–25.Google Scholar
  12. 12.
    Padayatty SJ, Sun H, Wang YH, Riordan HD, Hewitt SM, Katz A, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.PubMedGoogle Scholar
  13. 13.
    Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA. 1996;93:3704–9.PubMedGoogle Scholar
  14. 14.
    Dixon SJ, Wilson JX. Adaptive regulation of ascorbate transport in osteoblastic cells. J Bone Miner Res. 1992;7:675–81.PubMedGoogle Scholar
  15. 15.
    Li Y, Schellhorn Herb E. New developments and novel therapeutic perspectives for vitamin C. J Nutr. 2007;137:2171–84.PubMedGoogle Scholar
  16. 16.
    Kallner AB, Hartmann D, Horning DH. Steady state turnover and body pool of ascorbic acid in man. Am J Clin Nutr. 1979;32:530–9.PubMedGoogle Scholar
  17. 17.
    Anderson D, Phillips BJ, Yu T, Edwards AJ, Ayesh R, Butterworth KR. The effect of vitamin C supplementation on biomarkers of oxygen radical generated damage in human volunteers with low or high cholesterol levels. Environ Mol Mutagen. 1997;30:161–74.PubMedGoogle Scholar
  18. 18.
    Johnson CS. Biomarkers for establishing a tolerable upper intake level for vitamin C. Nutr Rev. 1999;57:71–7.Google Scholar
  19. 19.
    Naidu AK, Vitamin C. In human health and disease is still a mystery? An overview. Nutr J. 2003;2:7.PubMedGoogle Scholar
  20. 20.
    Levin M. New concepts in the biology and biochemistry of ascorbic acid. New Engl J Med. 1986;31:892–902.Google Scholar
  21. 21.
    May JM, Zhi-chao Q. Transport and intracellular accumulation of vitamin C in endothelial cells: relevance to collagen synthesis. Arch Biochem Biophys. 2005;434:178–86.PubMedGoogle Scholar
  22. 22.
    Maehata Y, Takamizawa S, Ozawa S, Izukuri K, Kato Y, Sato S, et al. Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol. 2007;26(5):371–81.PubMedGoogle Scholar
  23. 23.
    Kishimoto Y, Saito N, Kurita K, Shimokado K, Maruyama N, Ishigami A. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem Biophys Res Commun. 2013;30(2):579–84.Google Scholar
  24. 24.
    Hulse JD, Ellis SR, Henderson LM. Carnitine biosynthesis-beta hydroxylation of trimethyllysine by an α-ketoglutarate dependent mitochondrial dioxygenase. J Biol Chem. 1978;253:1654–9.PubMedGoogle Scholar
  25. 25.
    Rebouche CJ. Ascorbic acid and carnitine biosynthesis. Am J Clin Nutr. 1991;54(6):1147S–52S.PubMedGoogle Scholar
  26. 26.
    Cameron E, Pauling L. Ascorbic acid and the glycosaminoglycans. Oncology. 1973;27:181–92.PubMedGoogle Scholar
  27. 27.
    Anon. Ascorbic acid and catabolism of cholesterol. Nutr Rev 1973;31:154.Google Scholar
  28. 28.
    Sharma P, Pramod J, Kothari LK, Ranka R, Sharma S. Hyperlipidemia in guinea pigs induced by chronic vitamin C deficiency. IJCB. 1989;4:62–4.Google Scholar
  29. 29.
    Sharma P, Pramod J, Sharma PK, Sapra M, Kothari LK. Effect of vitamin C deficiency and excess on the liver: a histopathological and biochemical study in guinea pigs fed normal or high cholesterol diet. Ind J Pathol Microbiol. 1990;33(4):307–13.Google Scholar
  30. 30.
    Ginter E, Bobek P, Jurcovicova M. Role of ascorbic acid in lipid metabolism. In: Seith PA, Toblert BM, editors. Ascorbic acid, chemistry, metabolism and uses. Washington DC: American Chemical Society; 1982. p. 381–93.Google Scholar
  31. 31.
    Gustafsson U, Wang FH, Axelson M, Kallner A, Sahlin S, Einarsson K. The effect of vitamin C in high doses on plasma and biliary lipid composition in patients with cholesterol gallstones: prolongation of the nucleation time. Eur J Clin Invest. 1997;27(5):387–91.PubMedGoogle Scholar
  32. 32.
    Pauling L. Vitamin C and common cold. San Francisco: Freeman; 1970.Google Scholar
  33. 33.
    Elwood PC, Lee HP, St Leger AS, Baird M, Howard AN. A randomized controlled trial of vitamin C in the prevention and amelioration of the common cold. Br J Prev Soc Med. 1976;30(3):193–6.PubMedGoogle Scholar
  34. 34.
    Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;1:CD000980. doi: 10.1002/14651858.CD000980.
  35. 35.
    Douglas RM, Chalker EB, Treacy B. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2000;2:CD000980.PubMedGoogle Scholar
  36. 36.
    Campbell JD, Cole M, Bunditrutavorn B, Vell AT. Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis. Cell Immunol. 1999;194:1–5.PubMedGoogle Scholar
  37. 37.
    Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006;50(2):85–94.PubMedGoogle Scholar
  38. 38.
    Bourne GH. The effect of vitamin C on healing wounds. Proc Nutr Soc. 1946;4:204.PubMedGoogle Scholar
  39. 39.
    Hellman L, Burns JJ. Metabolism of l-ascorbic acid-1-C14 in man. J Biol Chem. 1958;230:923–30.PubMedGoogle Scholar
  40. 40.
    Jagetia GC, Rajanikant GK, Mallikarjun Rao KVN. Ascorbic acid increases healing of excision wounds of mice whole body exposed to different doses of γ-radiation. Burns. 2007;33(4):484–94.PubMedGoogle Scholar
  41. 41.
    Hallberg L. Bioavailability of dietary iron in man. Annu Rev Nutr. 1981;1:123–7.PubMedGoogle Scholar
  42. 42.
    Bendich A, Cohen M. Ascorbic acid safety: analysis factors affecting iron absorption. Toxicol Lett. 1990;51:189–90.PubMedGoogle Scholar
  43. 43.
    Zhang Y, Zhao D, Xu J, Xu C, Dong C, Liu Q, et al. Effects of dietary factors on the pharmacokinetics of (58)Fe-labeled hemin after oral administration in normal rats and the iron-deficient rats. Biol Trace Elem Res. 2013;153(1–3):243–50.PubMedGoogle Scholar
  44. 44.
    Gowri S, Patel K, Prakash J, Srinivasan K. Influence of amla fruits (Emblica officinalis) on the bio-availability of iron from staple cereals and pulses. Nutr Res. 2001;21(12):1483–92.Google Scholar
  45. 45.
    Chiu PF, Ko SY, Chang CC. Vitamin C affects the expression of hepcidin and erythropoietin receptor in HepG2 cells. J Ren Nutr. 2012;22(3):373–6.PubMedGoogle Scholar
  46. 46.
    Darius Lane JR, Chikhani S, Richardson V, Richardson Des R. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochim Biophys Acta. 2013;1833(6):1527–41.PubMedGoogle Scholar
  47. 47.
    Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G. On the cytotoxicity of vitamin C and metal ions: a site specific Fenton mechanism. Eur J Biochem. 1983;137:119–20.PubMedGoogle Scholar
  48. 48.
    Minetti M, Forte T, Soriani M, Quaresima V, Menditto A, Ferrari M. Iron Induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation: no spin trapping evidence for the hydroxyl radical in iron-over loaded plasmas. Biochem J. 1992;282:459–65.PubMedGoogle Scholar
  49. 49.
    Berger TM, Mumby S, Gutteridge JMC. Ferrous ion detected in iron-overloaded cord blood plasma from preterm and term babies: implication for oxidation stress. Free Radic Res. 1995;22:555–9.PubMedGoogle Scholar
  50. 50.
    Halliwell B. Vitamin C: antioxidant or pro-oxidant in vivo ? Free Radic Res. 1996;25:439–54.PubMedGoogle Scholar
  51. 51.
    Herbert V, Shaw S, Jayatileke E. Vitamin C driven free radicals generation from iron. J Nutr. 1996;126:1213–20.Google Scholar
  52. 52.
    Proteggente AR, Rehman A, Halliwell B, Rice-Evans CA. Potential problems of ascorbic acid and iron supplementation: pro-oxidant effect in vivo? Biochem Biophys Res Commun. 2000;277:535–54053.PubMedGoogle Scholar
  53. 53.
    Mathur V, Murdia A, Hakim AA, Suhalka ML, Shaktawat GS, Kothari LK. Male infertility and the present status of its management by drugs. J Postgrad Med. 1979;25:90–6.PubMedGoogle Scholar
  54. 54.
    Huggins C, Scott WW, Heinen JH. Chemical composition of human serum and of the secretion of prostate and seminal vesicles. Am J Physiol. 1942;136:467–73.Google Scholar
  55. 55.
    Mann T. Biochemistry of semen and of the male reproductive tract. London: Methnen and Co. Ltd.; 1954. p. 20.Google Scholar
  56. 56.
    Chinoy NJ. Ascorbic acid turn over in animal and human tissue. J Anim Morphol Physiol. 1978; (Silver Jubilee Volume):69–85.Google Scholar
  57. 57.
    Chinoy MR, Sharma JD, Sanjeevan AG, Chinoy NJ. Structural changes in male reproductive organs and spermatozoa of scorbutic guinea-pigs. Proc Ind Natl Sci Acad. 1983;B49:628–35.Google Scholar
  58. 58.
    Gomes S, Odour OD, Bharaj B, Verjee ZH. Gonadal and plasma testosterone and cholesterol in scorbutic guinea-pigs. Int J Vit Nutr Res. 1977;47:75–80.Google Scholar
  59. 59.
    Paul PK, Datta-Gupta PN. Beneficial or harmful effects of a large dose of vitamin C on the reproductive organs of the male rat depending upon the level of food intake. Ind J Exp Biol. 1978;16:18–21.Google Scholar
  60. 60.
    Sapra M, Sharma P, Kothari LK. Effect of vitamin C deficiency on testicular structure in the guinea pig. J Postgrad Med. 1987;33:69–73.PubMedGoogle Scholar
  61. 61.
    Agarwal A. Role of antioxidants in treatment of male infertility. Reprod Biomed Online. 2004;8:616–27.PubMedGoogle Scholar
  62. 62.
    Abasalt H, Colagar Eisa T, Marzony. Ascorbic acid in human seminal plasma: determination and its relationship to sperm quality. J Clin Biochem Nutr. 2009;45(2):144–9.Google Scholar
  63. 63.
    Saleh RA, Agarwal A, Nada EA, Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597.PubMedGoogle Scholar
  64. 64.
    Shi YC, Sun HM, Shang XJ, Zhu PY, Huang YF. Total antioxidant capacity of seminal plasma in fertile and infertile men. Zhonghua Nan Ke Xue. 2005;11:915–7.PubMedGoogle Scholar
  65. 65.
    Shi YC, Shang XJ, Wang XL, Huang YF. Correlation of total antioxidant capacity in seminal plasma with sperm motility of infertile men. Zhonghua Nan Ke Xue. 2006;12:703–5.PubMedGoogle Scholar
  66. 66.
    Agarwal A, Ikemoto I, Loughlin KR. Relationship of sperm parameters to levels of reactive oxygen species in semen specimens. J Urol. 1994;152:107–10.PubMedGoogle Scholar
  67. 67.
    Shukla KK, Mahdi AA, Ahmad MK, Jaiswar SP, Shankwar SN, Tiwari SC. Mucuna pruriens reduces stress and improves the quality of semen in infertile men. Evid Based Complement Alternat Med. 2010;7(1):137–44.PubMedGoogle Scholar
  68. 68.
    Hampl R, Drábková P, Kanďár R, Stěpán J. Impact of oxidative stress on male infertility. Ceska Gynekol. 2012;77(3):241–5.PubMedGoogle Scholar
  69. 69.
    Doshi SB, Khullar K, Sharma RK, Agarwal A. Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol. 2012;15(10):109.Google Scholar
  70. 70.
    Patriarca M, Menditto A, Morisi G. Determination of ascorbic acid in blood or serum and in seminal plasma using a simplified sample preparation and high performance liquid chromatography coupled with UV detection. J Liq Chromatogr. 1991;14:297–312.Google Scholar
  71. 71.
    Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250:66–9.PubMedGoogle Scholar
  72. 72.
    Donnelly ET, McClure N, Lewis SE. Glutathione and hypotaurine in vitro: effects on human sperm motility, DNA integrity and production of reactive oxygen species. Mutagenesis. 2000;15:61–8.PubMedGoogle Scholar
  73. 73.
    Kodama H, Yamaguchi R, Fukuda J, Kasi H, Tanaka K. Increased oxidative deoxyribonucleic acid damage in spermatozoa of infertile male patients. Fertil Steril. 1997;68:519–24.PubMedGoogle Scholar
  74. 74.
    Donnelly E, McClure N, Lewis SEM. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide induced DNA damage in human spermatozoa. Mutagenesis. 1999;14:505–12.PubMedGoogle Scholar
  75. 75.
    Jelodar G, Nazifi S, Akbari A. The prophylactic effect of vitamin C on induced oxidative stress in rat testis following exposure to 900 MHz radio frequency wave generated by a BTS antenna model. Electromagn Biol Med. 2013. doi: 10.3109/15368378.2012.735208.
  76. 76.
    Verma A, Kanwar KC. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: an invitro analysis. Andrologia. 1998;30:325–9.PubMedGoogle Scholar
  77. 77.
    Henmi H, Endo T, Kitaiima Y, et al. Effects of ascorbic acid supplementation on serum progesterone levels in patients with a luteal phase defect. Fertil Steril. 2002;80:459–61.Google Scholar
  78. 78.
    Myasnikova IA. Effect of ascorbic acid, nicotinic acid and thiamine on cholestolemia. Voenno Morski Med Akad Leningrad. 1947;8:140.Google Scholar
  79. 79.
    Ginter E, Zolch Z. Raised ascorbic acid consumption in cholesterol fed guinea pigs. Int J Vit Nutr Res. 1972;42:72.Google Scholar
  80. 80.
    Krumdieck C, Butterworth CE. Ascorbate–cholesterol–lecithin interactions factors of potential importance in pathogenesis of atherosclerosis. Am J Clin Nutr. 1974;27:866.PubMedGoogle Scholar
  81. 81.
    Banerjee S, Gosh PK. Metabolism of acetate in scorbutic guinea pigs. Am J Physiol. 1960;199:1064.PubMedGoogle Scholar
  82. 82.
    Das S, Snehlata, Srivastava LK. Effect of ascorbic acid on lipid profile and per-oxidation in hypercholestrolemic rabbits. Nutr Res. 1997;17(2):231–41.Google Scholar
  83. 83.
    Ginter E, Babla J, Cerven J. The effect of chronic hypovitaminosis C on the metabolism of cholesterol and atherogenesis in guinea pigs. J Atheroscler Res. 1969;10:341.PubMedGoogle Scholar
  84. 84.
    Frikke-Schmidt H, Lykkesfeld J. Role of marginal vitamin C deficiency in atherogenesis: in vivo models and clinical studies. 2009. doi: 10.1111/j.1742-7843.2009.00420.
  85. 85.
    Frikke-Schmidt H, Tveden-Nyborg P, Muusfeldt Birck M, Lykkesfeldt J. High dietary fat and cholesterol exacerbates chronic vitamin C deficiency in guinea pigs. Br J Nutr. 2011;105:54–61.PubMedGoogle Scholar
  86. 86.
    Sharma P, Pramod J, Sharma PK, Chaturvedi SK, Kothari LK. Effect of vitamin C administration on serum and aortic lipid profile of guinea pigs. IJMR. 1988;87:28.Google Scholar
  87. 87.
    Kothari LK, Sharma P. Aggravation of cholesterol induced hyperlipidemia by chronic vitamin C deficiency: experimental study in guinea pigs. Acta Biol Hung. 1988;39(1):4.Google Scholar
  88. 88.
    Vaney N, Sharma P, Pramod J, Varandami J, Kothari LK. Leucocyte ascorbic acid and blood lipids in normocholesterolemic men receiving different amounts of vitamin C. Vitaminologia. 1988;4:47–8.Google Scholar
  89. 89.
    Gaur GS, Dixit AK. Comparative study of vitamin C on serum lipid profile in healthy male and female human subjects. J Sci Res. 2012;4(3):775–81.Google Scholar
  90. 90.
    Marc P, McRae. Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: a meta-analysis of 13 randomized controlled trials. JCM. 2008;7(2):548–81.Google Scholar
  91. 91.
    Itoh R, Yamada K, Oka J, Echizen H, Suyama Y, Murakami K. Serum ascorbic acid and HDL cholesterol in a healthy elderly Japanese population. Int J Vit Nutr Res. 1990;60(4):360–5.Google Scholar
  92. 92.
    Jacques PF. Effects of vitamin C on high-density lipoprotein cholesterol and blood pressure. J Am Coll Nutr. 1992;11(2):139–44.PubMedGoogle Scholar
  93. 93.
    Jacques PF, Sulsky SI, Perrone GA, Schaefer EJ. Ascorbic acid and plasma lipids. Epidemiology. 1994;5(1):19–26.PubMedGoogle Scholar
  94. 94.
    Jacques PF, Sulsky SI, Perrone GE, Jenner J, Schaefer EJ. Effect of vitamin C supplementation on lipoprotein cholesterol, apolipoprotein, and triglyceride concentrations. Ann Epidemiol. 1995;5(1):52–9.PubMedGoogle Scholar
  95. 95.
    Okamoto K. The relationship between dietary ascorbic acid intake and serum lipid concentration in the aged. Nihon Ronen Igakkai Zasshi. 1992;29(12):908–11.PubMedGoogle Scholar
  96. 96.
    Simon JA, Hudes ES. Relation of serum ascorbic acid to serum lipids and lipoproteins in US adults. J Am Coll Nutr. 1998;17(3):250–5.PubMedGoogle Scholar
  97. 97.
    Manson JE, Stampfer MJ, Willett WC, et al. A prospective study of vitamin C and incidence of coronary heart disease in women. Circulation. 1982;85:865–75.Google Scholar
  98. 98.
    Knekt P, Reunanen A, Jarvinen R, Seppanen R, Heliovaara M, Aromaa A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol. 1994;139:1180–9.PubMedGoogle Scholar
  99. 99.
    Rimm EB, Stampfer MJ, Ascherio A, Giovanno E, Colditz GA, Willettt WC. Vitamin E consumption and risk of coronary heart disease in men. N Engl J Med. 1993;328:1450–6.PubMedGoogle Scholar
  100. 100.
    Enstrom JE, Kanim LE, Klein MA. Vitamin C intake and mortality among a sample of the United States population. Epidemiology. 1992;3:194–202.PubMedGoogle Scholar
  101. 101.
    Pramod J, Sharma P, Kothari LK. Effect of age and sex on serum and leucocyte ascorbic acid levels in normal human subjects. Vitaminologia. 1986;2:93–100.Google Scholar
  102. 102.
    Kothari LK, Pramod J, Sharma P, Chaturvedi SK. Influence of age and vitamin C status on serum cholesterol. IJE. 1988;17(4):929–30.Google Scholar
  103. 103.
    Gale CR, Martyn CN, Winter PD, Cooper C. Vitamin C and risk of death from stroke and coronary heart disease in cohort of elderly people. Br Med J. 1995;310:1563–6.Google Scholar
  104. 104.
    Ness A, Egger M, Davey-Smith G. Role of antioxidant vitamins in prevention of cardiovascular disease. Br Med J. 1999;319:577–9.Google Scholar
  105. 105.
    Steinbrecher UP, Zhang H, Lougheed M. Role of oxidative modified LDL in atherosclerosis. Free Radic Biol Med. 1990;9:155–68.PubMedGoogle Scholar
  106. 106.
    Frei B. Vitamin C as an antiatherogen: mechanism of action. In: Packer L, Fuchs J, editors. Vitamin C in health and disease. New York: Marcel and Dekker Inc; 1997. p. 163–82.Google Scholar
  107. 107.
    Berger TM, Polidori MC, Dabhag A, Evans PJ, Halliwell B, Marrow JD, et al. Antioxidant activity of vitamin C in iron over loaded human plasma. J Biol Chem. 1992;272:15656–60.Google Scholar
  108. 108.
    Dasgupta A, Zdunek T. In vitro lipid peroxidation of human serum catalyzed by copper ion: antioxidant rather than prooxidant role of ascorbate. Life Sci. 1992;50:2875–82.Google Scholar
  109. 109.
    Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA. 1989;86:6377–81.PubMedGoogle Scholar
  110. 110.
    Martin A, Frei B. Both intracellular and extracellular vitamin C inhibit atherogenic modification of LDL by human vascular endothelial cells. Atheroscler Thromb Vasc Biol. 1997;17:1583–90.Google Scholar
  111. 111.
    Das S, Snehlata DN, Srivastava LM. Role of ascorbic acid on in vitro oxidation of low-density lipoprotein derived from hypercholesterolemic patients. Clin Chim Acta. 2006;372(1-2):202–5.PubMedGoogle Scholar
  112. 112.
    Shariat SZAS, Mostafavi SA, Khakpour F. Antioxidant effects of vitamins C and E on the low-density lipoprotein oxidation mediated by myeloperoxidase. Iran Biomed J. 2013;17(1):22–8.Google Scholar
  113. 113.
    Lehr HA, Frei B, Arfors KE. Vitamin C prevents cigarette smoke-induced leukocyte aggregation and adhesion to endothelium in vivo. Proc Natl Acad Sci USA. 1994;91:7688–92.PubMedGoogle Scholar
  114. 114.
    Lehr HA, Weyrich AS, Saetzler RK, Jurek A, Arfors KE, Zimmerman GA, et al. Vitamin C blocks inflammatory platelet-activating factor mimetics created by cigarette smoking. J Clin Invest. 1997;99:2358–64.PubMedGoogle Scholar
  115. 115.
    Lehr HA, Frei B, Olofsson AM, Carew TE, Arfors KE. Protection from oxidized LDL induced leukocyte adhesion to microvascular and macrovascular endothelium in vivo by vitamin C but not by vitamin E. Circulation. 1995;91:1552–3.Google Scholar
  116. 116.
    Kaneko T, Kaji K, Mastuo M. Protective effect of lipophilic derivatives of ascorbic acid on lipid peroxide-induced endothelial injury. Arch Biochem Biophys. 1993;304:176–80.PubMedGoogle Scholar
  117. 117.
    Sabharwal AK, May JM. Alpha-lipoic acid and ascorbate prevent LDL oxidation and oxidant stress in endothelial cells. Mol Cell Biochem. 2008;309:125–32.PubMedGoogle Scholar
  118. 118.
    Anderson D, Phillips BJ, Yu T, Edwards AJ, Ayesh R, Butterworth KR. The effect of vitamin C supplementation on biomarkers of oxygen radical generated damage in human volunteers with low or high cholesterol levels. Environ Mol Mutagen. 1997;30:161–74.PubMedGoogle Scholar
  119. 119.
    Fuller CJ, Grundy SM, Norkus EP, Jialal I. Effect ascorbate supplementation on low density lipoprotein oxidation in smokers. Atherosclerosis. 1996;119:139–50.PubMedGoogle Scholar
  120. 120.
    Nyyssonen K, Poulsen HE, Hayn M, Agerbo P, Porkkalo Sarataho E, Kaikkonen J, et al. Effect of supplementation of smoking men with plain or slow release ascorbic acid on lipoprotein oxidation. Eur J Clin Nutr. 1997;51:154–63.PubMedGoogle Scholar
  121. 121.
    Samman S, Brown AJ, Beltran C, Singh S. The effect of ascorbic acid on plasma lipids and oxidisability of LDL in male smokers. Eur J Clin Nutr. 1997;51:472–7.PubMedGoogle Scholar
  122. 122.
    Wen Y, Cooke T, Feely J. The effects of pharmacological supplementation with vitamin C on low density lipoprotein oxidation. Br J Clin Pharmacol. 1997;44:94–7.PubMedGoogle Scholar
  123. 123.
    Valkonen MM, Kuusi T. Vitamin C prevents the acute atherogenic effects of passive smoking. Free Radic Biol Med. 2000;28(3):3–428.Google Scholar
  124. 124.
    Carr AC, Frei B. Does vitamin C act as pro-oxidant under physiological conditions? FASEB J. 1999;13:1007–24.Google Scholar
  125. 125.
    May JM, Li L, Qu ZC. Oxidized LDL up-regulates the ascorbic acid transporter SVCT2 in endothelial cells. ZC Mol Cell Biochem. 2010;343(12):217–22.Google Scholar
  126. 126.
    Kapsokefalou M, Miller DD. Iron loading and large doses of intravenous ascorbic acid promote lipid peroxidation in whole serum in guinea pigs. Br J Nutr. 2001;85:681–7.PubMedGoogle Scholar
  127. 127.
    Chen K, Suh J, Carr AC, Marrow JD, Zeind J, Frei B. Vitamin C suppresses lipid damage in vivo even in the presence of iron over-load. Am J Physiol Endocrinol Metab. 2000;279:E1212–406.Google Scholar
  128. 128.
    Ginter E, Adama M. Characterization of the aortic collagens in guinea pigs with chronic vitamin C deficiency. Atherosclerosis. 1983;46(3):369–73.PubMedGoogle Scholar
  129. 129.
    Rath M. Eradicating heart disease. San Francisco: Health Now; 1993.Google Scholar
  130. 130.
    Lehr HA. Protection from oxidized LDL induced leukocyte adhesion to microvascular and macrovascular endothelium in-vivo by vitamin C but not by vitamin E. Circulation. 1995;91:1525–32.PubMedGoogle Scholar
  131. 131.
    Weber C. Increased adhesiveness of isolated monocytes to endothelium is prevented by vitamin C intake in smokers. Circulation. 1996;93:1488–92.PubMedGoogle Scholar
  132. 132.
    Nakata Y, Maeda N. Vulnerable atherosclerotic plaque morphology in apolipoprotein E-deficient mice unable to make ascorbic acid. Circulation. 2002;105:1485–90.PubMedGoogle Scholar
  133. 133.
    Cameron E, Campbell A. The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact. 1974;9:285–315.PubMedGoogle Scholar
  134. 134.
    Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1976;73:3685–9.PubMedGoogle Scholar
  135. 135.
    Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: re-evaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1978;75:4538–42.PubMedGoogle Scholar
  136. 136.
    Murata A, Morishige F, Yamaguchi H. Prolongation of survival times of terminal cancer patients by administration of large doses of ascorbate. Int J Vit Nutr Res. 1982;2/23:103–13.Google Scholar
  137. 137.
    Block G. Vitamin C and cancer prevention: the epidemiologic evidence. Am J Clin Nutr. 1991;53(1):270S–82S.PubMedGoogle Scholar
  138. 138.
    Block G. Epidemiologic evidence regarding vitamin C and cancer. Am J Clin Nutr. 1991;54(6):1310S.PubMedGoogle Scholar
  139. 139.
    Head KA. Ascorbic acid in the prevention and treatment of cancer. Altern Med Rev. 1998;3(3):174–86.PubMedGoogle Scholar
  140. 140.
    Block G, Patterson B, Subar A. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer. 1992;18:1–29.PubMedGoogle Scholar
  141. 141.
    Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96:1027–39.PubMedGoogle Scholar
  142. 142.
    Loria CM, Klag MJ, Caulfield LE, Whelton PK. Vitamin C status and mortality in US adults. Am J Clin Nutr. 2000;72:139–45.PubMedGoogle Scholar
  143. 143.
    Khaw KT, Bingham S, Welch A, Luben R, Wareham N, Oakes S, Day N. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study: European prospective investigation into cancer and nutrition. Lancet. 2001;357:657–63.PubMedGoogle Scholar
  144. 144.
    Kushi LH, Fee RM, Sellers TA, Zheng W, Folsom AR. Intake of vitamins A, C, and E and postmenopausal breast cancer: The Iowa Women’s Health Study. Am J Epidemiol. 1996;144(2):165–74.PubMedGoogle Scholar
  145. 145.
    Padayatty SJ, Riordan HD, Hewitt SM, Katz A, Hoffer LJ, Levine M. Intravenously administered vitamin C as cancer therapy: three cases. CMAJ. 2006;174:937–42.PubMedGoogle Scholar
  146. 146.
    Kathleen A. Ascorbic acid in prevention and treatment of cancer. Altern Med Rev. 1988;3(3):174–86.Google Scholar
  147. 147.
    Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102:13604–9.PubMedGoogle Scholar
  148. 148.
    Cabanillas F. Vitamin C and cancer: what can we conclude—1, 609 patients and 33 years later? P R Health Sci J. 2010;29(3):215–7.PubMedGoogle Scholar
  149. 149.
    Cha J, Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice. Exp Oncol. 2011;33(4):226–30.PubMedGoogle Scholar
  150. 150.
    Cha J, Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int J Oncol. 2013;42(1):55–64.PubMedGoogle Scholar
  151. 151.
    Assouline S, Miller WH. High-dose vitamin C therapy: renewed hope or false promise? CMAJ. 2006;174:956–7.PubMedGoogle Scholar
  152. 152.
    Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patients’ health-related quality of life after high dose vitamin C administration. J Korean Med Sci. 2007;22:7–11.PubMedGoogle Scholar
  153. 153.
    Wild SH, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.PubMedGoogle Scholar
  154. 154.
    American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33:S62.Google Scholar
  155. 155.
    Tesfaye S, Gill G. Chronic diabetic complications in Africa. Afr J Diabetes Med. 2011;19:4–8.Google Scholar
  156. 156.
    Chintan AP, Nimish LP, Nayana B, Bhavna M, Mahendra G, Hardik T. Cardiovascular complication of diabetes mellitus. J Appl Pharm Sci. 2011;4:1–6.Google Scholar
  157. 157.
    Vincintini Juliana MS, Valentini Juliana MS, Grotto Denise MS, Paniz C, Roehrs M, Brucker N, et al. Association among microalbuminuria and oxidative stress biomarkers in patients with type 2 diabetes. J Investig Med. 2011;59:649–54.Google Scholar
  158. 158.
    Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev. 2001;17:189–912.PubMedGoogle Scholar
  159. 159.
    Harding AH, Wareham NJ, Bingham SA, Khaw K, Luben R, Welch A, et al. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer—Norfolk prospective study. Arch Intern Med. 2008;168(14):1493–9.PubMedGoogle Scholar
  160. 160.
    Montenen J, Knekt P, Jarvinen R, Reunanen A. Dietary antioxidants and risk of type 2 diabetes. Diabetes Care. 2004;27:362–6.Google Scholar
  161. 161.
    Maxwell SR, Thomason H, Sandler D, Leguen C, Baxter MA, Thorpe GH, et al. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur J Clin Invest. 1997;27(6):484–90.PubMedGoogle Scholar
  162. 162.
    Odum EP, Ejilemele AA, Wakwe VC. Antioxidant status of type 2 diabetic patients in Port Harcourt, Nigeria. Niger J Clin Pract. 2012;15(1):55–8.PubMedGoogle Scholar
  163. 163.
    Mazloom Z, Hejazi N, Dabbaghmanesh MH, Tabatabaei HR, Ahmadi A, Ansar H. Effect of vitamin C supplementation on postprandial oxidative stress and lipid profile in type 2 diabetic patients. Pak J Biol Sci. 2011;14(19):900–4.PubMedGoogle Scholar
  164. 164.
    Sharma P, Mishra S, Ajmera P, Mathur S. Oxidative stress in metabolic syndrome. Indian J Clin Biochem. 2005;20(1):145–9.PubMedGoogle Scholar
  165. 165.
    Özkaya D, Naziroğlu M, Armağan A, Demirel A, Köroglu BK, Çolakoğlu N, et al. Dietary vitamin C and E modulates oxidative stress induced-kidney and lens injury in diabetic aged male rats through modulating glucose homeostasis and antioxidant systems. Cell Biochem Funct. 2011;29(4):287–93.PubMedGoogle Scholar
  166. 166.
    Naziroğlu M, Butterworth PJ, Sonmez TT. Dietary vitamin C and E modulates antioxidant levels in blood, brain, liver, muscle, and testes in diabetic aged rats. Int J Vit Nutr Res. 2011;81(6):347–57.Google Scholar
  167. 167.
    Sridulyakul P, Wongeak-in N, Patumraj S. Correlations between endothelial functions and ROS detection in diabetic microvascular wall: early and late ascorbic acid supplementation. Int J Vasc Med. 2012;2012:709695.PubMedGoogle Scholar
  168. 168.
    Hoffman RP, Dye AS, Bauer JA. Ascorbic acid blocks hyperglycaemic impairment of endothelial function in adolescents with type 1 diabetes. Pediatr Diabetes. 2012;13(8):607–10.PubMedGoogle Scholar
  169. 169.
    Prakash J, Hota J, Singh S, Sharma O. Clinical spectrum of chronic renal failure in the elderly: a hospital based study from eastern India. Int Urol Nephrol. 2006;38:821–7.PubMedGoogle Scholar
  170. 170.
    Qin QJ, Deng HC, Zhao TF, Cao WF, Liu DF, Lan LZ. Study on the effect and mechanism of ascorbic acid on renal podocytes in diabetes. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2008;24(1):112–5.PubMedGoogle Scholar
  171. 171.
    Lee EY, Lee MY, Hong SW, Chung CH, Hong SY. Blockade of oxidative stress by vitamin C ameliorates albuminuria and renal sclerosis in experimental diabetic rats. Yonsei Med J. 2007;48(5):847–55.PubMedGoogle Scholar
  172. 172.
    Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001;50:1938–42.PubMedGoogle Scholar
  173. 173.
    Mustata GT, Rosca M, Biemel KM, Reihl O, Smith MA, Viswanathan A. Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes. 2005;4:517–26.Google Scholar
  174. 174.
    Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008;27:331–71.PubMedGoogle Scholar
  175. 175.
    Cotter MA, Love A, Watt MJ, Cameron NE, Dines KC. Effects of natural free radical scavengers on peripheral nerve and neurovascular function in diabetic rats. Diabetologia. 1995;38(11):1285–94.PubMedGoogle Scholar
  176. 176.
    Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care. 2004;27(9):2178–83.PubMedGoogle Scholar
  177. 177.
    Singh PP, Mahadi F, Roy A, Sharma P. Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian J Clin Biochem. 2009;24(4):324–42.PubMedGoogle Scholar
  178. 178.
    Leibovitz B, Siegel BV. Ascorbic acid, neutrophil function, and the immune response. Int J Vit Nutr Res. 1978;48(2):159–64.Google Scholar
  179. 179.
    Animashaun A, Kelleher J, Heatley RV, Trejdosiewicz LK, Losowsky MS. The effect of zinc and vitamin C supplementation on the immune status of patients with Crohn’s disease. Clin Nutr. 1990;9(3):137–46.PubMedGoogle Scholar
  180. 180.
    Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007;98(1):S29–35.PubMedGoogle Scholar
  181. 181.
    Feigen GA, Smith BH, Dix CE, Flynn CJ, Peterson NS, Rosenberg LT, et al. Enhancement of antibody production and protection against systemic anaphylaxis by large doses of vitamin C. Res Commun Chem Pathol Pharmacol. 1982;38(2):313–33.PubMedGoogle Scholar
  182. 182.
    Haskell BE, Johnston CS. Complement component C1q activity and ascorbic acid nutriture in guinea pigs. Am J Clin Nutr. 1991;54(6):1228S–30S.PubMedGoogle Scholar
  183. 183.
    Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51(4):301–23.PubMedGoogle Scholar
  184. 184.
    Jeong YJ, Hong SW, Kim JH, Jin DH, Kang JS, Lee WJ, et al. Vitamin C-treated murine bone marrow-derived dendritic cells preferentially drive naïve T cells into Th1 cells by increased IL-12 secretions. Cell Immunol. 2011;266(2):192–9.PubMedGoogle Scholar
  185. 185.
    Holmannová D, Koláčková M, Krejsek J. Vitamin C and its physiological role with respect to the components of the immune system. Vnitr Lek. 2012;58(10):743–9.PubMedGoogle Scholar
  186. 186.
    Mikirova N, Casciari J, Rogers A, Taylor P. Effect of high-dose intravenous vitamin C on inflammation in cancer patients. J Transl Med. 2012;10:189.PubMedGoogle Scholar
  187. 187.
    Dwivedi S, Goel A, Mandhani A, Natu SM, Khattri S, Pant KK. Diagnostic and prognostic significance of prostate specific antigen and serum interleukin 18 and 10 in patients with locally advanced carcinoma prostate: a prospective comparative study. Asian Pacific J Cancer Prev. 2011;12:1639–44.Google Scholar
  188. 188.
    Dwivedi S, Shukla KK, Gupta G, Sharma P. Non-invasive biomarker in prostate cancer—a novel approach. Ind J Clin Biochem. 2013;28(2):107–9.Google Scholar
  189. 189.
    Khaw KT, Woodhouse P. Interrelation of vitamin C, infection, haemostatic factors and cardiovascular disease. BMJ. 1995;310:1559–63.PubMedGoogle Scholar
  190. 190.
    Ness AR, Powles JW, Khaw KT. Vitamin C and cardiovascular disease—a systematic review. J Cardiovasc Risk. 1997;3:513–21.Google Scholar
  191. 191.
    Woodward M, Lowe GDO, Rumley A, Tunstall-Pedoe H, Philippou H, Lane DA. Epidemiology of coagulation factors, inhibitors and activation markers: the third Glasgow MONICA study (2). Relationships to cardiovascular risk factors and prevalent cardiovascular disease. Br J Haematol. 1997;97:785–97.PubMedGoogle Scholar
  192. 192.
    Woodward M, Rumley A, Tunstall-Pedoe H, Lowe GDO. Association of blood rheology and interleukin-6 with cardiovascular risk factors and prevalent cardiovascular disease. Br J Haematol. 1999;104:246–57.PubMedGoogle Scholar
  193. 193.
    Woodward M, Rumley A, Lowe GDO, Tunstall-Pedoe H. C-reactive protein: associations with haematological variables, cardiovascular risk factors and prevalent cardiovascular disease. Br J Haematol. 2003;122:135–41.PubMedGoogle Scholar
  194. 194.
    Gao X, Bermudez OI, Tucker KL. Plasma C-reactive protein and homocysteine concentrations are related to frequent fruit and vegetable intake in hispanic and non-hispanic white elders. J Nutr. 2004;134:913–8.PubMedGoogle Scholar
  195. 195.
    Ford ES, Liu S, Mannino DM, Giles WH, Smith SJ. C-reactive protein concentration and concentrations of blood vitamins, carotenoids, and selenium among United States adults. Eur J Clin Nutr. 2003;57:1157–63.PubMedGoogle Scholar
  196. 196.
    Lowe GDO. Circulating inflammatory markers and risks of cardiovascular and non-cardiovascular disease. J Thromb Haemost. 2005;3:1618–27.PubMedGoogle Scholar
  197. 197.
    Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006;50(2):85–94.PubMedGoogle Scholar
  198. 198.
    Stohs SJ, Bagchi D. Mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18(2):321–36.PubMedGoogle Scholar
  199. 199.
    Shaban El-Neweshy M, Said El-Sayed Y. Influence of vitamin C supplementation on lead-induced histopathological alterations in male rats. Exp Toxicol Pathol. 2011;63(3):221–7.PubMedGoogle Scholar
  200. 200.
    Kosik-Bogacka DI, Baranowska-Bosiacka I, Marchlewicz M, Kolasa A, Jakubowska K, Olszewska M, et al. Effect of l-ascorbic acid and/or tocopherol supplementation on electrophysiological parameters of the colon of rats chronically exposed to lead. Med Sci Monit. 2011;17(1):BR16–26.PubMedGoogle Scholar
  201. 201.
    Houston DK, Johnson MA. Does vitamin C intake protect against lead toxicity? Nutr Rev. 2000;58(3):73–5.PubMedGoogle Scholar
  202. 202.
    Singh AL, Singh VK, Srivastava A. Effect of arsenic contaminated drinking water on human chromosome: a case study. 2013. doi:  10.1007/s12291-013-0330-3.
  203. 203.
    Herrera A, Pineda J, Antonio MT. Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environ Toxicol Pharmacol. 2013;36(1):73–9.PubMedGoogle Scholar
  204. 204.
    Antonio Garcia MT, Herrera Dueñas A, Pineda Pampliega J. Hematological effects of arsenic in rats after subchronical exposure during pregnancy and lactation: the protective role of antioxidants. Exp Toxicol Pathol. 2013;65(5):609–14.PubMedGoogle Scholar
  205. 205.
    Singh S, Rana SV. Ascorbic acid improves mitochondrial function in liver of arsenic-treated rat. Toxicol Ind Health. 2010;26(5):265–72.PubMedGoogle Scholar
  206. 206.
    Singh MK, Dwivedi S, Yadav SS, Sharma P, Khattri S. Arsenic-induced hepatic toxicity and its attenuation by fruit extract of Emblica officinalis (amla) in mice. Ind J Clin Biochem. 2013. doi: 10.1007/s12291-013-0353-9.
  207. 207.
    El-Sokkary GH, Awadalla EA. The protective role of vitamin C against cerebral and pulmonary damage induced by cadmium chloride in male adult albino rat. Open Neuroendocrinol J. 2011;4:1–8.Google Scholar
  208. 208.
    Hounkpatin ASY, Johnson RC, Guédénon P, Domingo E, Alimba CG, Boko M. Protective effects of vitamin C on haematological parameters in intoxicated Wistar rats with cadmium, mercury and combined cadmium and mercury. Int Res J Biol Sci. 2012;1(8):76–81.Google Scholar
  209. 209.
    Gajawat S, Sancheti G, Goyal PK. Vitamin C against concomitant exposure to heavy metal and radiation: a study on variations in hepatic cellular counts. Asian J Exp Sci. 2005;19(2):53–8.Google Scholar
  210. 210.
    Lucksch F. C-vitamin und schizophrenic. Wien Klin Wochenschr. 1940;53:1009–11.Google Scholar
  211. 211.
    Subotičanec K, Folnegović-Šmalc V, Korbar M, Meštrović B, Buzina R. Vitamin C status in chronic schizophrenia. Biol Psychiatry. 1990;28(11):959–66.PubMedGoogle Scholar
  212. 212.
    Altuntas I, Aksoy H, Coskun I, Caykoylu A, Akcay F. Erythrocyte superoxide dismutase and glutathion peroxidase activities and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin Chem Lab Med. 2000;38:1277–81.PubMedGoogle Scholar
  213. 213.
    Vaiva G, Thomas P, Leroux JM. Erythrocyte superoxide dismutase determination in positive moments of psychosis. Therapie. 1994;49:343–8.PubMedGoogle Scholar
  214. 214.
    Reddy R, Mahadik SP, Mukherjee M, Murty JN. Enzymes of the antioxidant system in chronic schizophrenic patients. Biol Psychiatry. 1991;30:409–12.PubMedGoogle Scholar
  215. 215.
    Kuloghi M, Ustundag B, Atmaca M, Canatan H, Tezean AE, Cinkiline N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct. 2002;20:171–5.Google Scholar
  216. 216.
    Mahadik SP, Mukherjee S, Correnti I, Sheffer R. Elevated levels of lipid peroxidation products in plasma from drug-naive patients at onset of psychosis. Schizophr Res. 1995;15:66–70.Google Scholar
  217. 217.
    Arvindakshan M, Sitasawad S, Debsikdar V, Ghate M, Evans D, Horrobin DF, et al. Essential polyunsaturated fatty acid and lipid peroxide levels in never-medicated and medicated schizophrenia patients. Biol Psychiatry. 2003;53:56–64.PubMedGoogle Scholar
  218. 218.
    Gaur N, Gautam S, Gaur M, Sharma P, Dadheech G, Mishra S. The biochemical womb of schizophrenia: a review. Indian J Clin Biochem. 2008;23(4):307–27.PubMedGoogle Scholar
  219. 219.
    Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol. 1983;23:239–57.PubMedGoogle Scholar
  220. 220.
    Dadheech G, Mishra S, Gautam S, Sharma P. Evaluation of antioxidant deficit in schizophrenia. Indian J Psychiatry. 2008;50(1):16–20.PubMedGoogle Scholar
  221. 221.
    Seregi A, Schaefer A, Komlos M. Protective role of brain ascorbic acid content against lipid peroxidation. Experientia. 1978;34:1056–7.PubMedGoogle Scholar
  222. 222.
    Oke AI, May L, Adams RN (1987). Ascorbic acid distribution pattern in human brain. Ann NY Acad Sci. 1987;498:1–12.Google Scholar
  223. 223.
    Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP. Supplementation with a combination of omega 3 fatty acids and antioxidants (vitamin E and C) improves the outcome of schizophrenia. Schizophr Res. 2003;62:195–204.PubMedGoogle Scholar
  224. 224.
    Dadheech G, Mishra S, Gautam S, Sharma P. Oxidative stress—tocopherol, ascorbic acid and reduced glutathione status in schizophrenics. Indian J Clin Biochem. 2006;21(2):34–8.PubMedGoogle Scholar
  225. 225.
    Dakhale GN, Khanzode SD, Khanzode SS, Saoji A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology. 2005;182:494–8.PubMedGoogle Scholar
  226. 226.
    Gautam M, Agrawal M, Gautam M, Sharma P, Gautam AS, Gautam S. Role of antioxidants in generalised anxiety disorder and depression. Indian J Psychiatry. 2012;54(3):244–7.PubMedGoogle Scholar
  227. 227.
    Harrison FE. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis. 2012;29(4):711–26.PubMedGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2013

Authors and Affiliations

  • Shailja Chambial
    • 1
  • Shailendra Dwivedi
    • 1
  • Kamla Kant Shukla
    • 1
  • Placheril J. John
    • 2
  • Praveen Sharma
    • 1
  1. 1.Department of BiochemistryAll India Institute of Medical SciencesJodhpurIndia
  2. 2.Department of Zoology, Centre for Advanced StudiesUniversity of RajasthanJaipurIndia

Personalised recommendations