Advertisement

Indian Journal of Clinical Biochemistry

, Volume 28, Issue 3, pp 215–226 | Cite as

Molecular Studies on Coronary Artery Disease—A Review

  • A. Supriya SimonEmail author
  • T. Vijayakumar
Review Article

Abstract

Coronary artery disease (CAD) remains the major cause of mortality and morbidity in the entire world population. The conventional risk factors of CAD include hypertension, hyperlipidemia, diabetes mellitus, family history, smoking etc. These factors contribute only 50 % of the total risk of CAD. For providing a complete risk assessment in CAD, it is mandatory to have well-planned clinical, biochemical and genetic studies in patients with CAD and subjects who are at risk of developing CAD. In this review an attempt is made to critically evaluate the conventional and emerging risk factors which predispose the individual to CAD. Specifically, the molecular basis of CAD including high oxidative stress, low antioxidant status and increased DNA damage are covered. A comprehensive and multifactorial approach to the problem is the better way to reduce the morbidity and mortality of the disease.

Keywords

Coronary artery diseases (CAD) DNA damage Oxidative stress Antioxidant status Cytokinesis-block micronuclei (CBMN) assay 

Notes

Acknowledgments

The authors would like to express their sincere thanks and gratitude to the CEO of Genetika, Centre for Advanced Genetic Studies, Thiruvananthapuram & to the faculty of Department of Biochemistry and Anatomy, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla for their advice and guidance.

References

  1. 1.
    Ashif M. Role of fruit, vegetables and spice in diabetes. Int J Nutr Pharm Neurol Dis. 2011;1:27–35.CrossRefGoogle Scholar
  2. 2.
    Das S, Yadav D, Narang R, Das N. Interrelationship between lipid peroxidation, ascorbic acid and superoxide dismutase in coronary artery disease. Curr Sci. 2002;83:488–91.Google Scholar
  3. 3.
    Nishtar S. Prevention coronary heart disease in South Asia. Lancet. 2002;360:1015–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Ghaffar A, Reddy KS, Singhi M. Burden of non-communicable diseases in South Asia. BMJ. 2004;328:807–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Reddy KS, Shah B, Varghese C, Ramadoss A. Responding to the threat of chronic diseases in India. Lancet. 2005;366:1746–51.Google Scholar
  6. 6.
    Indrayan A. Forecasting vascular disease cases and associated mortality in India. Reports of the National Commission on Macroeconomics and Health. Ministry of Health and Family Welfare, India 2005. Available at: http://www.whoindia.org/EN/Section102/Section201_888.htm. Cited 2 Nov 2006.
  7. 7.
    Gupta R, Gupta VP, Sarna M, Bhatnagar S, Thanvi J, Sharma V, et al. Prevalence of coronary heart disease and risk factors in an urban Indian population: Jaipur Heart Watch-2. Indian Heart J. 2002;54:59–66.PubMedGoogle Scholar
  8. 8.
    Knopp RH. Risk factors for coronary artery disease in women. Am J Cardiol. 2002;89:28–34.CrossRefGoogle Scholar
  9. 9.
    Guven M, Guven SG, Oz E. DNA repair gene XRCC1 and XPD polymorphisms and their association with coronary artery disease risks and micronucleus frequency. Heart Vessels. 2007;22:355–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Iftikar JK, Christie MB. Conditional risk factors for atherosclerosis. Mayo Clin Proc. 2005;80(2):219–30.CrossRefGoogle Scholar
  11. 11.
    Rao HB, Govindarju V, Manjunath CN. Risk protection—homocysteine in coronary heart disease. Indian J Clin Biochem. 2007;22(1):18–27.CrossRefGoogle Scholar
  12. 12.
    Stephens JW, Humphries SE. The molecular genetics of cardiovascular disease: clinical implications. J Intern Med. 2003;253(2):120–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Kasliwal RR, Kulshreshtha A, Agrawal S, Bansal M, Trehan N. Prevalence of cardiovascular risk factors in Indian patients undergoing coronary artery bypass surgery. JAPI. 2006;54:371–5.PubMedGoogle Scholar
  14. 14.
    Muhlestein JB. Secondary prevention of coronary artery disease with antimicrobials: current status and future directions. Am J Cardiovasc Drugs. 2002;2:107–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Botto N, Mssetti S, Petrozzi L. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coron Artery Dis. 2002;13:269–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Andreassi MG. Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage. Mutat Res. 2003;543:67–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Terry MB, Gammon MD, Zhang FF, et al. Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk. Cancer Epidemiol Biomark Prev. 2004;13:2053–8.Google Scholar
  18. 18.
    Sak SC, Barrett HJ, Paul BA, et al. DNA repair gene XRCC1 polymorphism and bladder cancer risk. BMC Genet. 2007;8:13.PubMedCrossRefGoogle Scholar
  19. 19.
    Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104:503–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Crowther MA. Pathogenesis of atherosclerosis. Hematology. 2005;1(1):436–41.CrossRefGoogle Scholar
  23. 23.
    Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA, et al. Heart Study Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med. 1998;338:1650–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Rajadurai J, Arokiasami J, Pasamanichan K, Shatar A, Mei-Lin O. Coronary disease in Asians. Aust NZ J Med. 1992;22:345–8.CrossRefGoogle Scholar
  25. 25.
    Enas EA, Garg A, Davidson MA. Coronary heart disease and its risk factors in the first generation immigrant Asian Indians to the United States of America. Indian Heart J. 1996;48:343–54.PubMedGoogle Scholar
  26. 26.
    Simon AS, Roy DD, Jayapal V, Vijayakumar T. Biochemical and genetic studies on cardiometabolic syndrome. Ind J Clin Biochem. 2010;25(2):164–8.CrossRefGoogle Scholar
  27. 27.
    Enriquez-Sarano M, Klodas E, Garratt KN, Bailey KR, Tajik AJ, Holmes DR. Secular trends in coronary atherosclerosis analysis in patients with valvular regurgitation. N Engl J Med. 1996;335:316–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Gardner CD, Tribble DL, Young DR, Ahn D, Fortmann SP. Population frequency distributions of HDL, HDL(2), and HDL(3) cholesterol and apolipoproteins A-I and B in healthy men and women and associations with age, gender, hormonal status, and sex hormone use the Stanford Five City Project. Prev Med. 2000;31:335–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Cui Y, Blumenthal RS, Flaws JA. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161:1413–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Higgins M. Epidemiology and prevention of coronary heart disease in families. Am J Med. 2000;108(5):387–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Kardia SL, Modell SM, Peyser PA. Family-centered approaches to understanding and preventing coronary heart disease. Am J Prev Med. 2003;24:143–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Enas EA, Senthilkumar A. Coronary artery disease in Asian Indians: an update and review. Coron Artery Dis. 2005;3:21–57.Google Scholar
  33. 33.
    Begom R, Singh R. Prevalence of coronary artery disease and risk factors in urban population of south and north India. Acta Cardiol. 1995;3:227–40.Google Scholar
  34. 34.
    Gupta A, Gupta R, Lal B, Singh AK, Kothari K. Prevalence of coronary risk factors among Indian physicians. J Assoc Physicians India. 2001;49:1148–52.PubMedGoogle Scholar
  35. 35.
    Misra A, Reddy R, Reddy KS. Clustering of impaired glucose tolerance, hyperinsulinemia, and dyslipidemia in young north Indian patients with CHD: a preliminary case–control study. Indian Heart J. 1999;51:275–80.PubMedGoogle Scholar
  36. 36.
    Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343:16–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Joanne S. 100 Years ago, exercise was blended into daily life. Available at: http://www.npr.org/templates/story/story.php?storyId=127525702. Cited 23 Nov 2010.
  38. 38.
    He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I Epidemiologic Follow-Up. Study Arch Intern Med. 2001;161:996–1002.CrossRefGoogle Scholar
  39. 39.
    Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev. 2003;83(4):1069–112.PubMedGoogle Scholar
  40. 40.
    Kendall DM, Sobel BE, Coulston AM, Peters Harmel AL, Mclean BK, Peragallo-Dittko V, et al. The insulin resistance syndrome and coronary artery disease. Coron Artery Dis. 2003;14:335–48.PubMedCrossRefGoogle Scholar
  41. 41.
    Benowitz NL. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis. 2003;46:91–111.PubMedCrossRefGoogle Scholar
  42. 42.
    Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation. 2005;111:2684–98.PubMedCrossRefGoogle Scholar
  43. 43.
    Heiss C, Amabile N, Lee AC, Real WM, Schick SF, Lao D, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function. J Am Coll Cardiol. 2008;51:1760–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Flouris AD, Vardavas CI, Metsios GS, Tsatsakis AM, Koutedakis Y. Biological evidence for the acute health effects of secondhand smoke exposure. Am J Physiol Lung Cell Mol Physiol 2010;298(1):3–12.Google Scholar
  45. 45.
    Simon AS, Roy DD, Jayapal V, Vijayakumar T. Somatic DNA damages in cardiovascular autonomic neuropathy. Ind J Clin Biochem. 2011;26(1):50–6.CrossRefGoogle Scholar
  46. 46.
    Goldberg IJ, Mosca L, Piano MR, Fisher EA. AHA Science Advisory: wine and your heart: a science advisory for healthcare professionals from the Nutrition Committee, Council on Epidemiology and Prevention, and Council on Cardiovascular Nursing of the American Heart Association. Circulation. 2001;103:472–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Andréasson S, Allebeck P. Alcohol as medication is no good. More risks than benefits according to a survey of current knowledge. Lakartidningen. 2005;102(9):632–7.PubMedGoogle Scholar
  48. 48.
    Numminen H, Syrjala M, Benthin G, Kaste M, Hillbom M. The effect of acute ingestion of a large dose of alcohol on the hemostatic system and its circadian variation. Stroke. 2000;31:1269–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Djoussé L, Gaziano JM. Alcohol consumption and heart failure: a systematic review. Curr Atheroscler Rep. 2008;10(2):117–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Saremi A, Arora R. The cardiovascular implications of alcohol and red wine. Am J Ther. 2008;15(3):265–77.PubMedCrossRefGoogle Scholar
  51. 51.
    Mobashir M, Varshney D, Gupta S. Cardiovascular risk factors in Type 2 diabetes mellitus [abstract]. Medicine Update 2005;254–62.Google Scholar
  52. 52.
    Achari V, Thakur AK, Sinha AK. The metabolic syndrome—its prevalence and association with coronary artery disease in type 2 diabetes. JIACM. 2006;7:32–8.Google Scholar
  53. 53.
    Leiter LA, Ceriello A, Davidson JA, Hanefeld M, Monnier L, Owens DR, et al. International Prandial Glucose Regulation (PGR) Study Group: postprandial glucose regulation: new data and new implications. Clin Ther. 2005;27(Suppl):42–56.CrossRefGoogle Scholar
  54. 54.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Tocci G, Valenti V, Sciarretta S, Volpe M. Multivariate risk assessment and risk score cards in hypertension. Vasc Health Risk Manag. 2007;3(3):313–20.PubMedGoogle Scholar
  56. 56.
    Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens. 2000;13(2):3–10.CrossRefGoogle Scholar
  57. 57.
    Lassègue B, Griendling K. Reactive oxygen species in hypertension. An update. Am J Hypertens. 2004;17:852–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004;122:339–52.PubMedCrossRefGoogle Scholar
  59. 59.
    Rodrigo R, Passalacqua W, Araya J, Orellana M, Rivera G. Implications of oxidative stress and homocysteine in the pathophysiology of essential hypertension. J Cardiovasc Pharmacol. 2003;42:453–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Miyajima K, Minatoguchi S, Ito Y, et al. Reduction of QTc dispersion by the angiotensin II receptor blocker valsartan may be related to its anti-oxidative stress effect in patients with essential hypertension. Hypertens Res. 2007;30:307–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Third Report of the National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report [special communication]. Circulation 2002;106:3143–21.Google Scholar
  62. 62.
    Rader DJ, Puré E. Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab. 2005;1:223–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Shaikh AK, Suryakar AN. Oxidative stress and antioxidant status before and after supplementation of A-Z anti-oxidant tablets in coronary artery disease. Biomed Res. 2009;20(2):136–40.Google Scholar
  64. 64.
    Jessup W, Wilson P, Gaus K, et al. Oxidized lipoproteins and macrophages. Vascul Pharmacol. 2002;38(4):239–48.PubMedCrossRefGoogle Scholar
  65. 65.
    Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Bass KM, Newschaffer CJ, Klag MJ, Bush TL. Plasma lipoprotein levels as predictors of cardiovascular death in women. Arch Intern Med. 1993;153:2209–16.CrossRefGoogle Scholar
  66. 66.
    Shao B, Heinecke JW. HDL, lipid peroxidation, and atherosclerosis. J Lipid Res. 2009;50:599–601.PubMedCrossRefGoogle Scholar
  67. 67.
    Eberly LE, Stamler J, Neaton JD. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch Intern Med. 2003;163:1077–83.PubMedCrossRefGoogle Scholar
  68. 68.
    Jonsson S, Hedblad B, Engstrom G, Nilsson P, Berglund G, Janzon L. Influence of obesity on cardiovascular risk: twenty-three-year follow-up of 22,025 men from an urban Swedish population. Int J Obes Relat Metab Disord. 2002;26:1046–53.PubMedCrossRefGoogle Scholar
  69. 69.
    Halcox J, Zalos G, Charakida M, Quyyumi AA. Obesity predicts coronary endothelial dysfunction independently of inflammation, atherosclerosis, and conventional risk factors. J Am Coll Cardiol 2004;43 (suppl A):485.Google Scholar
  70. 70.
    Despres JP. Abdominal obesity: the most prevalent cause of the metabolic syndrome and related cardiometabolic risk. Eur Heart J. 2006;8(Suppl):4–12.Google Scholar
  71. 71.
    Janiszewski PM, Kuk JL, Ross R. Is the reduction of lower-body subcutaneous adipose tissue associated with elevations in risk factors for diabetes and cardiovascular disease? Diabetologia. 2008;51:1475–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Chambers JC, Obeid OA, Refsum H. Plasma homocysteine concentration and risk of coronary heart disease in UK Indian Asians and European men. Lancet. 2000;355:523–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Enas EA. Lipoprotein (a) is an important genetic risk factor for coronary artery disease in Asian Indians. Am J Cardiol. 2001;88:201–2.PubMedCrossRefGoogle Scholar
  74. 74.
    Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.PubMedCrossRefGoogle Scholar
  75. 75.
    Chen J, Mehta JL. Role of oxidative stress in coronary heart disease. Ind Heart J. 2004;56:1–15.Google Scholar
  76. 76.
    Griffiths HR. Chemical modifications of biomolecules by oxidants. In: The handbook of environmental chemistry, vol. 20. New York: Springer; 2005. pp. 160–71.Google Scholar
  77. 77.
    Totter JR. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci USA. 1980;77:1763–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Ames BN. Endogenous oxidative DNA damage, aging, and cancer. Free Radical Res Commun. 1989;7:121–8.CrossRefGoogle Scholar
  79. 79.
    Martinet W, Knaapen MWM, De Meyer GRY, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106:927–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Magder S. Reactive oxygen species: toxic molecules or spark of life? Crit Care. 2006;10(208):211–20.Google Scholar
  81. 81.
    Mahmoudi M, Mercer J, Bennett M. DNA damage and repair in atherosclerosis Cardiovascular Research. 2006;71:259–68.Google Scholar
  82. 82.
    Uchida K. Forum: role of oxidation in atherosclerosis: role of reactive aldehyde in cardiovascular diseases. Free Radical Biol Med. 2000;28(12):1685–96.CrossRefGoogle Scholar
  83. 83.
    Zschenker O, Illies T, Ameis D. Overexpression of lysosomal acid lipase and other proteins in atherosclerosis. J Biochem. 2006;140(1):23–38.PubMedCrossRefGoogle Scholar
  84. 84.
    Kaur K, Bedi G, Kaur M, Vij A, Kaur I. Lipid peroxidation and the levels of antioxidant enzymes in coronary artery disease. Indian J Clin Biochem. 2008;23(1):33–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Patri M, Padmini A, Babu PP. Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: a brief perspective. Ann Neurosci. 2009;16(1):22–30.Google Scholar
  86. 86.
    Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C, et al. Oxidative stress and homocysteine in coronary artery disease. Clin Chem. 2001;47(5):887–92.PubMedGoogle Scholar
  87. 87.
    Simon AS, Anoop V, Chithra V, Vijayakumar T. Evaluation of oxidative stress and antioxidant status in coronary artery disease patients with smoking and/or alcoholism. Pushpagiri Med J. 2011;3(1):25–8.Google Scholar
  88. 88.
    Koutur SJ, Memon L, Stefanovic A, Spasic S, Kalimanovska VS, Bogavac SN. Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients. Clin Biochem. 2007;40:181–7.CrossRefGoogle Scholar
  89. 89.
    Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291–5.PubMedGoogle Scholar
  90. 90.
    Patel S, Sinha A, Parmar D. An update on the role of environmental factors in Parkinson’s disease. Annu Neurosci. 2005;12(4):79–86.CrossRefGoogle Scholar
  91. 91.
    Tamer L, Sucu N, Polat G, Ercan B, Aytacoglu B, Yucebilgic G, et al. Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch Med Res. 2002;33(3):257–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Nikam SV, Nikam PS, Chandrashekar MR, Kalsad ST, Jnaneshwara KB. Role of lipid peroxidation, glutathione and antioxidant enzymes in H1N1 Influenza. Biomed Res. 2010;21(4):457–60.Google Scholar
  93. 93.
    Akila D, Souza B, Prashant V, D’Souza V. Oxidative injury and antioxidants in coronary artery bypass graft surgery: off pump CABG significantly reduces oxidative stress. Clin Chem Acta. 2007;375:147–52.CrossRefGoogle Scholar
  94. 94.
    Hsu CH, Chi BC, Liu MY, Li JH, Chen CJ, Chen RY. Phosphine-induced oxidative damage in rats: role of glutathione. Toxicology. 2002;179:1–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Singh PP, Chandra A, Mahdi F, Roy A, Sharma P. Reconvene and reconnect the antioxidant hypothesisin human health and disease. Ind J Clin Biochem. 2010;25(3):225–43.CrossRefGoogle Scholar
  96. 96.
    Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee J, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003;22(1):18–35.PubMedCrossRefGoogle Scholar
  97. 97.
    Sood R, Narang APS, Abraham R, Arora U, Calton R, Sood N. Changes in vitamin C and vitamin E during oxidative stress in myocardial reperfusion. Indian J Physiol Pharmacol. 2007;51(2):165–9.PubMedGoogle Scholar
  98. 98.
    Bhakui P, Chandra M, Misra MK. Levels of free radical scavengers and antioxidants in postreperfused patients of myocardial infarction. Curr Sci. 2005;89(1):168–70.Google Scholar
  99. 99.
    Marjani AJ. Plasma lipid peroxidation zinc and erythrocyte Cu–Zn superoxide dismutase enzyme activity in patients with type 2 Diabetes Mellitus in Gorgan city. Internet J Endocrinol. 2005;2:1–11.Google Scholar
  100. 100.
    Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA. 1973;70:1753–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Schwartz SM, Murry CE. Proliferation and the monoclonal origins of atherosclerotic lesions. Annu Rev Med. 1998;49:437–60.PubMedCrossRefGoogle Scholar
  102. 102.
    Andreassi MG, Botto N, Colombo MG, Biagini A, Clerico A. Genetic instability and atherosclerosis: can somatic mutations account for the development of cardiovascular diseases? Environ Mol Mutagen. 2000;35(4):265–9.Google Scholar
  103. 103.
    Li JJ, Gao RL. Should atherosclerosis be considered a cancer of the vascular wall? Med Hypotheses. 2005;64(4):694–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Trosko J, Chang C. An integrative hypothesis linking cancer, diabetes, and atherosclerosis: the role of mutations and epigenetic changes. Med Hypotheses. 1980;6:455–68.PubMedCrossRefGoogle Scholar
  105. 105.
    Wakabayashi K. Animal studies suggesting involvement of mutagen/carcinogen exposure in atherosclerosis. Mutat Res. 1990;239:181–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Sadhu D, Ramos K. Modulation by retinoic acid of spontaneous and benzo (a) pyrene-induced C-HA-RAS expression. In: Bronzetti G,Hayatsu H, De Flora S, Waters MD, Shankel D, editors. Antimutagenesis and anticarcinogenesis mechanism. Portland: Book News, 1993 Inc. vol. III. pp. 263–8.Google Scholar
  107. 107.
    Parkes JL, Cardell RR, Hubbard FC, Hubbard D, Meltzer A, Penn A. Cultured human atherosclerotic plaque smooth muscle cells retain transforming potential and display enhanced expression of the myc protooncogene. Am J Pathol. 1991;138:765–75.PubMedGoogle Scholar
  108. 108.
    Speir E, Modali R, Huang ES, Leon MB, Shawl F, Finkel T, Epstein SE. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science. 1994;265:391–4.PubMedCrossRefGoogle Scholar
  109. 109.
    Matturri L, Cazzullo A, Turconi P, Lavezzi AM. Cytogenetic aspects of cell proliferation in atherosclerotic plaques. Cardiologia. 1997;42:833–6.PubMedGoogle Scholar
  110. 110.
    Tokunaga O, Satoh T, Yamasaki F, Wu L. Multinucleated variant endothelial cells (MVECs) in human aorta: chromosomal aneuploidy and elevated uptake of LDL. Semin Thromb Hemost. 1998;24:279–84.PubMedCrossRefGoogle Scholar
  111. 111.
    Fossel M. Telomerase and the aging cell: implications for human health. JAMA. 1998;279:1732–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 1994;54:5059–63.PubMedGoogle Scholar
  113. 113.
    Mc Caffrey TA, Du B, Consigli S, Szabo P, Bray PJ, Hartner L, et al. Genomic instability in the type II TGF-beta 1 receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest. 1997;100:2182–8.CrossRefGoogle Scholar
  114. 114.
    Andreassi MG, Botto N. DNA damage as a new emerging risk factor in atherosclerosis. Trends Cardiovasc Med. 2003;13:270–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Bertazzi PA. Industrial disasters and epidemiology: a review of recent experiences. Scand J Work Environ Health. 1989;15:85–100.PubMedCrossRefGoogle Scholar
  116. 116.
    Van Schooten FJ, Hirvonen A, Maas LM, De Mol BA, Kleinjans JCS, Bell DA, Durrer JD. Putative susceptibility markers of coronary artery disease: association between VDR genotype, smoking, and aromatic DNA adduct levels in human right atrial tissue. FASEB. 1998;12:1409–17.Google Scholar
  117. 117.
    Renner SM, Massel D, Moon BC. Mediastinal irradiation: a risk factor for atherosclerosis of the internal thoracic arteries. Can J Cardiol. 1999;15:597–600.PubMedGoogle Scholar
  118. 118.
    Botto N, Rizza A, Colombo M, Mazzone A, Manfredi S, Masetti S, et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001;493:23–30.PubMedCrossRefGoogle Scholar
  119. 119.
    Basha BJ, Bakris GL, Sowers JR. Pathogenesis of atherosclerotic vascular disease. In: Bakris GL, Caralis DG, editors. Lower extremity arterial disease. Totowa: Humana Press Inc.; 2005. p. 181–99.Google Scholar
  120. 120.
    Andreassi MG. Nucleic acid oxidation and the pathogenesis of cardiovascular diseases. In: Evans MD, Cooke MS, editors. Oxidative damage to nucleic acids. Molecular Biology Intelligence Unit. Springer: New York; 2007. pp. 141–52.Google Scholar
  121. 121.
    Bazo AP, Salvadori D, Salvadori RAF, Sodré LP, da Silva GN, de Camargo EA. DNA repair gene polymorphism is associated with the genetic basis of atherosclerotic coronary artery disease. Cardiovasc Pathol. 2009;20(1):9–15.CrossRefGoogle Scholar
  122. 122.
    Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Brunicardi FC. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn. 2010;10(2):173–85.PubMedCrossRefGoogle Scholar
  123. 123.
    Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:891–937.PubMedCrossRefGoogle Scholar
  124. 124.
    Fenech M. The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res. 1993;285:35–44.PubMedCrossRefGoogle Scholar
  125. 125.
    Demirbag R, Yilmaz R, Gur M, Celik H, Guzel S, Selek S, et al. DNA damage in metabolic syndrome and its association with antioxidative and oxidative measurements. Int J Clin Pract. 2006;60:1187–93.PubMedCrossRefGoogle Scholar
  126. 126.
    Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis. 2008;198(2):347–53.PubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2013

Authors and Affiliations

  1. 1.Department of BiochemistryPushpagiri Institute of Medical Sciences and Research CentreThiruvallaIndia
  2. 2.Educare Institute of Dental SciencesMalappuramIndia

Personalised recommendations