Indian Journal of Clinical Biochemistry

, Volume 25, Issue 2, pp 193–200 | Cite as

Antihyperglycemic, antihyperlipidemic and antioxidative potential of Prosopis cineraria bark

Original Article

Abstract

Alloxan administration in male Swiss albino mice, induced diabetes by increasing blood glucose concentration and reducing hepatic glycogen content as compared to normal control group. Besides, serum lipid profile parameters such as total-cholesterol, triglyceride, low-density lipoprotein and very low-density lipoprotein-cholesterol were also elevated, whereas, the level of high-density lipoprotein-cholesterol was reduced significantly (P<0.05) in diabetic mice. Treatment of diabetic animals with crude ethanolic extract of bark of Prosopis cineraria (P. cineraria) for 45 days, significantly lowered blood glucose level, elevated hepatic glycogen content and maintained body weight and lipid-profile parameters towards near normal range. Declined activity of antioxidant enzymes and concentration of non-enzymatic antioxidants were also normalized by drug treatment, thereby reducing the oxidative damage in the tissues of diabetic animals and hence indicating the anti-diabetic and antioxidant efficacy of the extract.

Key Words

Prosopis cineraria bark Diabetes mellitus Oxidative stress Antidiabetic Antioxidant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharma AK. Diabetes mellitus and its complications: An update, 1ed. Macmillan India Ltd, New Delhi: Sharma AK (ed), 1993: pp92–205.Google Scholar
  2. 2.
    Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress and antioxidants: a review. J Biochem Mol Toxicol 2003;17:24–38.CrossRefPubMedGoogle Scholar
  3. 3.
    El Naggar EMB, Bartosikova L, Zemlicka M, Svajdlenka E, Rabiskova M, Strnadova V, et al. Antidiabetic effect of Cleome droserifolia aerial parts: Lipid peroxidation-induced oxidative stress in diabetic rats. Acta Vet Brno 2005;74:347–352.Google Scholar
  4. 4.
    Murthy PS. Medicinal plants in diabetes treatment. Ind J Clin Biochem 1995;10:52–53.CrossRefGoogle Scholar
  5. 5.
    Ivorra MD, Paya M, Villar A. A review of natural products and plants as potential antidiabetic drugs. J Ethnopharmacol 1989;27:243–275.CrossRefPubMedGoogle Scholar
  6. 6.
    Burkart A. A monograph of genus Prosopis (Leguminous). J Ar Arb 1976;57:219–249, 450–525.Google Scholar
  7. 7.
    N.A.S., Firewood crops. Shrub and tree species for energy production. National Academy of Sciences, Washington D C, 1980a.Google Scholar
  8. 8.
    ICFRE, (Indian Council of Forestry Research and Education), Khejri (Prosopis cineraria) ICFRE, Dehradun, India, 1993Google Scholar
  9. 9.
    Shalini. Vedic Leguminous Plants, (Shalini ed) 1997: pp57–58.Google Scholar
  10. 10.
    Toky OP. Medicinal values of Prosopis cineraria in arid and semiarid India. Society of chemical industry, I, 1999.Google Scholar
  11. 11.
    Purohit SD, Ramawat KG, Arya HC. Phenolics, peroxidase and phenolase as related to gall formation in some arid zone plants. Curr Sci 1979;48:714–716.Google Scholar
  12. 12.
    Rhoades DF. Herbivores, their interaction with secondary plant metabolites. Acad Press Inc London 1979: pp 3–54.Google Scholar
  13. 13.
    Aruna RV, Ramesh B, Kartha VN. Effect of beta-carotene on protein glycosylation in alloxan induced diabetic rats. Ind J Exp Biol 1999;37:399–401.Google Scholar
  14. 14.
    Henry J. Clinical diagnosis and management by laboratory methods. 17ed. Saunders WB, 1984: 1433pp.Google Scholar
  15. 15.
    Kadnur SV, Goyal RK. Comparative antidiabetic activity of Methanolic extract and Ethyl Acetate extract of Zingiber officinale Roscoe. Ind J Pharm Sci 2005;67:453–457.Google Scholar
  16. 16.
    Nagappa AN, Thakurdesai PA, Venkat Rao N, Singh J. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol 2003;88:45–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Jayaraman J. Laboratory Manual in Biochemistry. New Age International, New Delhi: 1981: pp53, 154–55.Google Scholar
  18. 18.
    Lowry OH, Rosebrough, NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265–275.PubMedGoogle Scholar
  19. 19.
    Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 1984;21:130–132.Google Scholar
  20. 20.
    Sinha AK. Colorimetric assay of catalase. Anal Biochem 1972;47:389–394.CrossRefPubMedGoogle Scholar
  21. 21.
    Rotruck JT, Pope AL, Ganther HF, Swanson AB. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973;179:588–590.CrossRefPubMedGoogle Scholar
  22. 22.
    Ellman GC. Tissue sulfhydril groups. Arch Biochem Biophys 1959;82:70–77.CrossRefPubMedGoogle Scholar
  23. 23.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–358.CrossRefPubMedGoogle Scholar
  24. 24.
    Guyton AC, Hall JE. Textbook of medical physiology, 10 ed. Philadelphia: Saunders WB, 2000: pp 810–818.Google Scholar
  25. 25.
    Harrison TR. Principles of Internal Medicine, 15ed. McGrawHill, 2001: pp2109–2137.Google Scholar
  26. 26.
    Gerich JE. Oral hypoglycemic agents. New Eng J Med 1989;321:1231–1245.PubMedGoogle Scholar
  27. 27.
    Abdel-Moneim A, El-Feki M, Salh E. Effect of Nigella sativa, fish oil and glicazide on alloxan diabetic rats. 1- Biochemical and Histopathological studies. J Egyp Ger Soc Zoo 1997;23:237–265.Google Scholar
  28. 28.
    Annamala PT, Augusti KT. Studies on the biochemical effect of glibenclamide on alloxan diabetic rabbit. Experientia 1980;36:383–384.CrossRefPubMedGoogle Scholar
  29. 29.
    El-Shenawy NS, Abdel-Nabi IM. Hypoglycemic effect of Cleome droserifolia ethanolic leaf extract in experimental diabetes, and on non-enzymatic antioxidant, glycogen, thyroid hormone and insulin levels. Diabetologia Croatica 2006;35:15–22.Google Scholar
  30. 30.
    Osinubi AA, Ajayi OG, Adesiyun AE. Evaluation of the anti-diabetic effect of aqueous leaf extract of Tapianthus butungii in male Sprague-dawley rats. Endocrinol 2006;16:41–47.CrossRefGoogle Scholar
  31. 31.
    Itamar R, Jay SS, Eleazar S. Diabetes: From research to diagnosis and treatment. Martin Dunitz UK 2003: pp81–139.Google Scholar
  32. 32.
    Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nature Clin Pract Endocrinol & Metab 2009;5:150–159.CrossRefGoogle Scholar
  33. 33.
    Shih KC, Kwak CF, Hwa CM. Acipimox attenuates hypertriglyceredemia in dyslipidemic non-insulin dependent diabetes mellitus patients without perturbation of insulin sensitivity and glycemic control. Ind J Clin Biochem 1997;36:113–119.Google Scholar
  34. 34.
    Solano DPM, Goldberg RB. Management of diabetic dyslipidemia. Endocrinol Metab Clin North Am 2005;34:1–25.CrossRefGoogle Scholar
  35. 35.
    Chahil TJ, Ginsberg HN. Diabetic dyslipidemia. Metab Clin North Am 2006;35:491–510.CrossRefGoogle Scholar
  36. 36.
    Frayn KN. Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc 2001;60:375–380.CrossRefPubMedGoogle Scholar
  37. 37.
    Mooradian AD, Haas MJ, Wehmeier KR, Wong NC. Obesity-related changes in high density lipoprotein metabolism. Obesity 2008;16:1152–1160.CrossRefPubMedGoogle Scholar
  38. 38.
    Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res 1987;28:613–628.PubMedGoogle Scholar
  39. 39.
    Abdollahi M, Salehnia A, Mortazavi SHR, Ebrahimi M, Shafiee A, Fouladian F, et al. Antioxidant, antidiabetic, antihyperlipidemic, reproduction stimulatory properties and safety of essential oil of Satureja khuzestanica in rat in vivo: a toxicopharmacological study. Med Sci Monit 2003;9:331–335.Google Scholar
  40. 40.
    Vincent MA, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann New York Acad Sci 2002;959:368–383.CrossRefGoogle Scholar
  41. 41.
    Haenen G, Vermculen N, Tiimmerman H, Best A. Effect of thiols on lipid peroxidation in rat liver microsomes. Chem Biol Interact 1989;31:207–212.Google Scholar
  42. 42.
    Soon YY, Tan BKH. Evaluation of the hypoglycemic and antioxidant activities of Morida officinalis in streptozotocin-induced diabetic rats. Singapore Med J 2000, 43:77–85.Google Scholar
  43. 43.
    Ihm SH, Yoo HJ, Park SW, Ihm JH. Effect of aminoguanidine on lipid peroxidation in streptozotocin-induced diabetic rats. Metabolism 1999;48:1141–1145.CrossRefPubMedGoogle Scholar
  44. 44.
    Loven D, Schedl H, Wilson H, Daabees TT, Stegink LD, Diekus M, et al. Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozotocin induced diabetes. Diabetes 1986;35:503–507.CrossRefPubMedGoogle Scholar
  45. 45.
    Satheesh MA, Pari L. Antioxidant effect of Boehavia diffusa L. in tissues of alloxan-induced diabetic rats. Ind J Exp Biol 2004;42:982–992.Google Scholar
  46. 46.
    McCord JM, Fridovich I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969;224:6049–6055.Google Scholar
  47. 47.
    Chance B, Sies H, Broveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.PubMedGoogle Scholar
  48. 48.
    Shin AH, Oh CJ, Park JW. Glycation-induced inactivation of antioxidant enzymes and modulation of cellular redox status in lens cells. Arch Pharm Res 2006;29:577–581.CrossRefPubMedGoogle Scholar
  49. 49.
    Wolff SP, Dean RT. Glucose autoxidation and protein modification: the potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 1987; 245: 243–250.PubMedGoogle Scholar
  50. 50.
    Arai K, Maguchi S, Fujji S, Ishibashi H, Oikawa K, Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase: identification of the in vitro glycated sites. J Biol Chem 1987; 262: 16969–16972.PubMedGoogle Scholar
  51. 51.
    Yan H, Harding JJ. Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem J 1997; 328: 599–605.PubMedGoogle Scholar
  52. 52.
    Hussain HEMA. Hypoglycemic, hypolipidemic and antioxidant properties of combination of curcumin from Curcuma longa, Linn, and partially purified product from Abroma augusta, Linn. in stptozotocin induced diabetes. Ind J Clin Biochem 2002; 17: 33–43.CrossRefGoogle Scholar
  53. 53.
    Chopra RN, Chopra IC, Handa KL, Kapur LD. Medicinal plants in diabetes. In: Gupta P (ed) Indegenous Drugs of India. 2ed, 1958: pp314–319.Google Scholar
  54. 54.
    Noyan T, Onem O, Sekeroglu MR, Koseoglu B, Dulger H, Bayram I, et al. Effects of erythropoietin and pentoxyfyline on the oxidant and antioxidant systems in the experimental short bowel syndrome. Cell Biochem Func 2003; 21: 49–54.CrossRefGoogle Scholar
  55. 55.
    Sharma N, Garg V. Antidiabetic and antioxidant potential of ethanolic extract of Butea monosperma leaves in alloxan-induced diabetic mice. Ind J Biochem Biophys 2009; 46: 99–105.Google Scholar
  56. 56.
    Ojewole JAO. Antinociceptive, anti-imflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol 2005; 99: 13–19.CrossRefPubMedGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2010

Authors and Affiliations

  1. 1.Department of Bioscience and BiotechnologyBanasthali UniversityBanasthali, RajasthanIndia

Personalised recommendations