Advertisement

Indian Journal of Clinical Biochemistry

, Volume 24, Issue 3, pp 301–306 | Cite as

Effects of chronic ethanol consumption in blood: A time dependent study on rat

  • Subir Kumar DasEmail author
  • L. Dhanya
  • Sowmya Varadhan
  • Sukhes Mukherjee
  • D. M. Vasudevan
Original Articles

Abstract

Alcohol consumption and health outcomes are complex and multidimensional. Ethanol (1.6g / kg body weight/ day) exposure initially affects liver function followed by renal function of 16–18 week-old male albino rats of Wistar strain weighing 200–220 g. Chronic ethanol ingestion increased in thiobarbituric acid reactive substances level and glutathione s-transferase activity; while decreased reduced gluatathione content and activities of catalase, glutathione peroxidase and glutathione reductase in a time dependent manner in the hemolysate. Though superoxide dismutase activity increased initially might be due to adaptive response, but decreased later. Elevation of serum nitrite level and transforming growth factor-b1 activity indicated that long-term ethanol consumption may cause hepatic fibrosis and can elicit pro-angiogenic factors. However, no alteration in vascular endothelial growth factor-C activity indicated that ethanol consumption is not associated with lymphangiogenesis. Therefore, we conclude that long-term ethanol-induced toxicity is linked to an oxidative stress, which may aggravate to fibrosis and elevate pro-angiogenic factors, but not associated with lymphangiogenesis.

Key Words

Ethanol Glutathione Liver function Nitric oxide Oxidative stress Transforming growth factor Vascular endothelial growth factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Das SK, Balakrishnan V, Vasudevan DM. Alcohol: Its health and social impact in India. Nat Med J Ind 2006;19(2): 94–99.Google Scholar
  2. 2.
    Fernandez-Checha JC, Kaplowitz N, Colell A, Gracia-Ruiz C. Oxidative stress and alcoholic liver disease. Alcohol Health & Res World 1997;21: 321–324.Google Scholar
  3. 3.
    Arteel GE, Iimuro Y, Yin M, Raleigh JA, Thurman RG. Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivo. Hepatol 1997;25: 920–926.CrossRefGoogle Scholar
  4. 4.
    Bardag-Gorce F, French B, Li J, Riley N, Yuan Q, Valinluck V, et al. The importance of cycling of blood alcohol levels in the pathogenesis of experimental alcoholic liver disease in rats. Gasteroenterol 2002; 123: 325–335.CrossRefGoogle Scholar
  5. 5.
    Das SK, Vasudevan DM. Modulation of lecithin activity by vitamin-B complex to treat on ethanol induced oxidative stress in liver. Ind J Exp Biol 2006; 44: 791–801.Google Scholar
  6. 6.
    Kingsley GR. The direct biuret method for the determination of serum proteins as applied to photoelectric and visual colorimetry. J Lab Clin Med 1942; 27: 840–845.Google Scholar
  7. 7.
    Doumas BT, Peter T, Jr. Serum and urine albumin: a progress report on their measurement and clinical significance. Clin Chim Acta 1997; 258: 3–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Larsen K. Creatinine assay by a reaction kinetic principle. Clin Chem Acta 1972; 41: 209.CrossRefGoogle Scholar
  9. 9.
    Kleinbongard P, Rasaf T, Dejam A, Kerber S, Kelm M. Griess method for nitrite measurement of aqueous and protein containing sample. Meth Enzymol 2002; 359: 158–168.PubMedCrossRefGoogle Scholar
  10. 10.
    Roe JH, Kuther CA. The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenyl hydrazine derivative of dehydro ascorbic acid. J Biol Chem. 1943; 147: 399–401.Google Scholar
  11. 11.
    Bergmeyer HU, Bernt E. Glutamate oxaloacetate transaminase; Glutamate oxaloacetate transaminase. In: Methods of Enzymatic Analysis. (Ed. Bergmeyer HU). Academic Press, New York, 1963, pp. 837–853.Google Scholar
  12. 12.
    Linhardt K, Walter K. Phosphatase. In: Methods of Enzymatic Analysis. (Ed. Bergmeyer HU). Academic Press, New York, 1963, p. 799.Google Scholar
  13. 13.
    Gowelock AH. In: Varley’s Practical Clinical Biochemistry, 6th edn. Heinemann Prfessional Publishing. 1988; p. 519.Google Scholar
  14. 14.
    Das SK, Vasudevan DM. Monitoring Oxidative Stress in Patients With Non-alcoholic and Alcoholic Liver Diseases. Ind J Clin Biochem 2005; 20(2): 24–28.CrossRefGoogle Scholar
  15. 15.
    Beutler E, Duron O, Kelly BM. Improved method for determination of blood glutathione. J Lab Clin Med 1963; 61: 882–888.PubMedGoogle Scholar
  16. 16.
    Sinnhuber RO, Yu TC, Yu TC. Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res 1958; 23: 626–630.Google Scholar
  17. 17.
    Pinto RE, Bartley W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J 1969; 112: 109–115.PubMedGoogle Scholar
  18. 18.
    Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130–7139.PubMedGoogle Scholar
  19. 19.
    Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxides. J Lab Clin Med 1967; 70: 158–159.PubMedGoogle Scholar
  20. 20.
    Paoletti F, Aldinucci D, Mocali A, Caparrini A. A sensitive spectro photometric method for the determination of the superoxide dismutase activity in tissue extract. J Biochem 1986; 154: 536–541.Google Scholar
  21. 21.
    Tussey L, Felder MR. Tissue-specific genetic variation in the level of mouse alcohol dehydrogenase is controlled transcriptionally in kidney and posttranscriptionally in liver. Proc Natl Acad Sci U S A. 1989; 86: 5903–5907.PubMedCrossRefGoogle Scholar
  22. 22.
    Das SK, Vasudevan DM. Biochemical diagnosis of alcoholism. Ind J Clin Biochem 2005; 20(1): 35–42.CrossRefGoogle Scholar
  23. 23.
    Baraona E, Lieber CS. Effects of alcohol on hepatic transport of proteins. Ann Rev Med 1982; 33: 281–292.PubMedCrossRefGoogle Scholar
  24. 24.
    Halliwell B. Gutteridge JM. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 1986; 246(2): 501–514.PubMedCrossRefGoogle Scholar
  25. 25.
    Plaa GL, Witschi H. Chemicals, drugs and lipid peroxidation. Ann Rev Pharmacol Toxicol 1976; 16: 125–141.CrossRefGoogle Scholar
  26. 26.
    Videla LA, Iturriaga H, Pino ME, Bunout D, Valenzuela A, Ugarte G. Content of hepatic reduced glutathione in chronic alcoholic patients: influence of the length of the abstinence and liver necrosis. Clin Sci 1984; 66: 283–290.PubMedGoogle Scholar
  27. 27.
    Kono Y, Fridovich I. Superoxide radical inhibits catalase. J Biol Chem 1982; 257: 5751–5754.PubMedGoogle Scholar
  28. 28.
    Das SK, Vasudevan DM. Effect of ethanol on liver antioxidant defense systems: a dose dependent study. Ind J Clin Biochem 2005; 20(1): 80–84.CrossRefGoogle Scholar
  29. 29.
    Rockey DC, Shah V. Nitric oxide biology and the liver: Report of an AASLD research workshop. Hepatol 2004; 39: 250–257.CrossRefGoogle Scholar
  30. 30.
    Lelkes PI, Hahn KL, Sukovich DA, Karmiol S, Schmidt DH. On the possible role of reactive oxygen species in angiogenesis. Adv Exp Med Biol 1998; 454: 295–310.PubMedGoogle Scholar
  31. 31.
    Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1995; 1: 1085–1089.PubMedCrossRefGoogle Scholar
  32. 32.
    Shih SC, Mullen A, Abrams K, Mukhopadhyay D, Claffey KP. Role of protein kinase C isoforms in phormol esterinduced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem 1999; 274: 15407–15414.PubMedCrossRefGoogle Scholar
  33. 33.
    Suganthalakshmi B, Anand R, Kim R, Mahalakshmi R, Karthikprakash S, Namperumalsamy P, Sundaresan P. Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis 2006; 12: 336–341.PubMedGoogle Scholar
  34. 34.
    Namiecinska M, Marciniak K, Nowak JZ. VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Higieny i Medycyny Dooewiadczalnej. 2005; 59: 573–583.Google Scholar
  35. 35.
    Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med 2000; 343: 1467–1476.PubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2009

Authors and Affiliations

  • Subir Kumar Das
    • 1
    • 2
    Email author
  • L. Dhanya
    • 1
  • Sowmya Varadhan
    • 1
  • Sukhes Mukherjee
    • 1
  • D. M. Vasudevan
    • 1
  1. 1.Department of BiochemistryAmrita Institute of Medical SciencesElamakkara, CochinIndia
  2. 2.Department of BiochemistryAgartala Govt. Medical CollegeKunjaban PO, AgartalaIndia

Personalised recommendations