Springback prediction for a mechanical micro connector using CPFEM based numerical simulations

  • F. Adzima
  • T. Balan
  • P. Y. Manach
Original Research


The bending process of an industrial connector is considered and investigated via numerical simulation using a crystal plasticity finite element model (CPFEM). The process consists of sequentially bending a 0.1 mm thick copper-based alloy (CuBe2) with progressive tools into a miniature cylindrical connector of around 1 mm in diameter. The paper focuses on the prediction of springback through the influence of several key-parameters of the numerical simulations. The finite element characteristics, single crystal plasticity model features and the number of grains in the sheet thickness are investigated in order to highlight relevant and influential parameters in CPFEM based microforming process simulations. The influence of the elastic properties is analyzed and a modification of the Peirce-Asaro-Needleman single crystal hardening law is taken into account in order to improve the description of reverse strain path changes. Finally, the numerical results are discussed and compared to the springback measured during the industrial process of the cylindrical connector. It is demonstrated, through the very good agreement with the experimental results, that such approach can be useful to simulate industrial processes.


Crystal plasticity Progressive tools Very thin sheets Springback 



The authors are grateful to Sébastien Toutain (Delta Composants), Jean-Luc Diot (AcuiPlast), Anthony Jégat, Cong Hanh Pham, Raphaël Pesci, Célia Caër for their help with the experiments, Laurent Tabourot, Nicolas Bonnet and Gilles Duchanois for their help with software and material models, and for fruitful discussions.


This work was supported financially by the Agence Nationale de la Recherche (ANR) in France, through the project XXS Forming (ANR 12-RNMP-0009).

Compliance with ethical standards

Conflict of interest



  1. 1.
    Qin Y (2010) Micro-manufacturing engineering and technology. Elsevier, Amsterdam, BostonGoogle Scholar
  2. 2.
    Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manuf Technol 50(2):445–462CrossRefGoogle Scholar
  3. 3.
    Engel U, Eckstein R (2002) Microforming - from basic research to its realization. J Mater Process Technol 125–126:35–44CrossRefGoogle Scholar
  4. 4.
    Vollertsen F, Hu Z, Niehoff HS, Theiler C (2004) State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol 151(1-3):70–79CrossRefGoogle Scholar
  5. 5.
    Fu MW, Chan WL (2012) A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol 67:2411–2437CrossRefGoogle Scholar
  6. 6.
    Geißdörfer S, Engel U, Geiger M (2006) FE-simulation of microforming processes applying a mesoscopic model. Int J Mach Tools Manuf 46(11):1222–1226CrossRefGoogle Scholar
  7. 7.
    Peng L, Liu F, Ni J, Lai X (2007) Size effects in thin sheet metal forming and its elastic-plastic constitutive model. Mater Des 28(5):1731–1736CrossRefGoogle Scholar
  8. 8.
    Hansen N (1977) The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall 25(8):863–869CrossRefGoogle Scholar
  9. 9.
    Kals TA, Eckstein R (2000) Miniaturization in sheet metal working. J Mater Process Technol 103(1):95–101CrossRefGoogle Scholar
  10. 10.
    Weiss B, Gröger V, Khatibi G, Kotas A, Zimprich P, Stickler R, Zagar B (2002) Characterization of mechanical and thermal properties of thin Cu foils and wires. Sensors Actuators A Phys 99(1-2):172–182Google Scholar
  11. 11.
    Gau J-T, Principe C, Yu M (2007) Springback behavior of brass in micro sheet forming. J Mater Process Technol 191(1-3):7–10CrossRefGoogle Scholar
  12. 12.
    Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall 30(6):1087–1119CrossRefGoogle Scholar
  13. 13.
    Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D, Bieler T, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211CrossRefGoogle Scholar
  14. 14.
    Wang S, Zhuang W, Balint D, Lin J (2009) A virtual crystal plasticity simulation tool for micro-forming. Procedia Engineering 1(1):75–78CrossRefGoogle Scholar
  15. 15.
    Chen S, Liu X, Liu L (2015) Effects of grain size and heterogeneity on the mechanical behavior of foil rolling. Int J Mech Sci 100:226–236CrossRefGoogle Scholar
  16. 16.
    Zhang H, Dong X (2015) Physically based crystal plasticity FEM including geometrically necessary dislocations: numerical implementation and applications in micro-forming. Comput Mater Sci 110:308–320CrossRefGoogle Scholar
  17. 17.
    Qin Y, Ma Y, Harrison CS, Brockett A, Zhou M, Zhao J, Law F, Razali A, Smith R, Eguia J (2008) Development of a new machine system for the forming of micro-sheet products. Int J Mater Form 1(S1):475–478Google Scholar
  18. 18.
    Liu J, Fu M, Lu J, Chan W (2011) Influence of size effect on the springback of sheet metal foils in micro-bending. Comput Mater Sci 50(9):2604–2614CrossRefGoogle Scholar
  19. 19.
    Gau J-T, Chen P-H, Gu H, Lee R-S (2013) The coupling influence of size effects and strain rates on the formability of austenitic stainless steel 304 foil. J Mater Process Technol 213(3):376–382CrossRefGoogle Scholar
  20. 20.
    Diehl A, Engel U, Geiger M (2010) Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int J Adv Manuf Technol 47(1-4):53–61CrossRefGoogle Scholar
  21. 21.
    Diehl A, Engel U, Geiger M (2008) Mechanical properties and bending behaviour of metal foils. Proc Inst Mech Eng B J Eng Manuf 222(1):83–91CrossRefGoogle Scholar
  22. 22.
    Adzima F, Balan T, Manach PY, Bonnet N, Tabourot L (2017) Crystal plasticity and phenomenological approaches for the simulation of deformation behavior in thin copper alloy sheets. Int J Plast 94:171–191CrossRefGoogle Scholar
  23. 23.
    Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31(12):1951–1976CrossRefGoogle Scholar
  24. 24.
    Balland P., Déprés C., Billard R., Tabourot L., Physically based kinematic hardening modelling of single crystal. AIP Conferences Series 1353 (2011) 91–96Google Scholar
  25. 25.
    Bonnet N (2007) Contribution à l’étude expérimentale et numérique du comportement des tôles d'épaisseur submillimétrique, PhD Thesis Arts et Métiers ParisTech. Metz FranceGoogle Scholar
  26. 26.
    Rice J (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. AIP Conferences Series 19(6):433–455zbMATHGoogle Scholar
  27. 27.
    Needleman A, Asaro R, Lemonds J, Peirce D (1985) Finite element analysis of crystalline solids. Comput Methods Appl Mech Eng 52(1-3):689–708CrossRefzbMATHGoogle Scholar
  28. 28.
    Bron F, Besson J (2004) A yield function for anisotropic materials. Application to aluminum alloys. Int J Plast 20(4-5):937–963Google Scholar
  29. 29.
    Bron F, Besson J (2004) A yield function for anisotropic materials. Application to aluminum alloys. Int J Plast 20(4-5):937–963CrossRefzbMATHGoogle Scholar
  30. 30.
    Pham CH, Thuillier S, Manach PY (2015) 2D springback and twisting of ultra-thin stainless steel U-shaped parts. Steel Research International 86(8):861–868CrossRefGoogle Scholar
  31. 31.
    Thuillier S, Manach PY (2009) Comparison of the work-hardening of metallic sheets using tensile and shear strain paths. Int J Plast 25(5):733–751CrossRefzbMATHGoogle Scholar
  32. 32.
    Zang SL, Thuillier S, Le Port A, Manach PY (2011) Prediction of the anisotropy and hardening of metallic sheets in tension, simple shear and biaxial tension. Int J Mech Sci 53(5):338–347Google Scholar
  33. 33.
    Hibbitt D., Karlsson B., Sorensen P., ABAQUS: theory manual, Hibbitt, Karlsson & Sorensen (1992)Google Scholar
  34. 34.
    Jiang CP, Chen CC (2012) Grain size effect on the Springback behavior of the microtube in the press bending process. Mater Manuf Process 27(5):512–518CrossRefGoogle Scholar
  35. 35.
    Tabourot L (2001) Vers une vision unifiée de la plasticité cristalline. Habilitation à Diriger des Recherches, Université de SavoieGoogle Scholar
  36. 36.
    Eggertsen P-A, Mattiasson K (2011) On the identification of kinematic hardening material parameters for accurate springback predictions. Int J Mater Form 4(2):103–120Google Scholar
  37. 37.
    Morestin F, Boivin M (1996) On the necessity of taking into account the variation in the young modulus with plastic strain in elastic-plastic software. Nucl Eng Des 162(1):107–116CrossRefGoogle Scholar
  38. 38.
    Yoshida F, Uemori T, Fujiwara K (2002) Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain. Int J Plast 18(5-6):633–659CrossRefzbMATHGoogle Scholar
  39. 39.
    Wagoner RH, Lim H, Lee MG (2013) Advances issues in springback. Int J Plast 45:3–20CrossRefGoogle Scholar
  40. 40.
    Chalal H, Racz SG, Balan T (2012) Springback of thick sheet AHSS subject to bending under tension. Int J Mech Sci 59(1):104–114CrossRefGoogle Scholar
  41. 41.
    Xu Z, Peng L, Bao E (2018) Size effect affected springback in micro/meso scale bending process: experiments and numerical modeling. J Mater Process Technol 252:407–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Arts et Métiers ParisTech, UMR CNRS 7239, LEM3Université de LorraineMetzFrance
  2. 2.Université de Bretagne SudUMR CNRS 6027, IRDLLorientFrance
  3. 3.Arts et Métiers ParisTech, LCFCUniversité de LorraineMetzFrance

Personalised recommendations