Advertisement

Investigation of tube fracture in the rotary draw bending process using experimental and numerical methods

  • R. SafdarianEmail author
Original Research
  • 34 Downloads

Abstract

The quality of tubes obtained by rotary draw bending (RDB) depends on many process parameters whose selection is essential to prevent defects such as fracture, wrinkling, springback and lack of tube’s ovality. Whereas the finite element method (FEM) is a useful method for defects detection in the metal forming processes, the Gurson-Tvergaard Needleman (GTN) damage model is used in the numerical simulation of RDB for fracture prediction of BS 3059 steel tube. The numerical results were verified with the experimental ones for thickness distribution in the tube outer wall and also fracture prediction. The effect of some RDB parameters such as pressure of pressure die, boosting velocity of pressure die, friction between the tube and pressure die, mandrel position and number of mandrel balls were studied on the fracture, wrinkling and tube’s ovality. The results showed that using a low value for the boosting velocity of pressure die caused the tube fracture and using the high value for that increased the wrinkling possibility of the tube inner wall. The results indicated that the fracture possibility increased by increasing the number of mandrel balls and decreaseing the distance between the mandrel position and the bending center. The tube’s ovality will be increased by decreasing the number of mandrel balls and increasing distance between the mandrel position and the bending center.

Keywords

Finite element method Rotary draw bending (RDB) GTN damage model Fracture Tube’s ovality Abaqus/explicit 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Li H, Yang H, Zhang ZY, Li GJ, Liu N, Welo T (2014) Multiple instability-constrained tube bending limits. J Mater Process Technol 214(2):445–455.  https://doi.org/10.1016/j.jmatprotec.2013.09.027 CrossRefGoogle Scholar
  2. 2.
    Heng L, He Y, Mei Z, Zhichao S, Ruijie G (2007) Role of mandrel in NC precision bending process of thin-walled tube. Int J Mach Tools Manuf 47(7–8):1164–1175.  https://doi.org/10.1016/j.ijmachtools.2006.09.001 CrossRefGoogle Scholar
  3. 3.
    Zhan M, Wang Y, Yang H, Long H (2016) An analytic model for tube bending springback considering different parameter variations of Ti-alloy tubes. J Mater Process Technol 236:123–137.  https://doi.org/10.1016/j.jmatprotec.2016.05.008 CrossRefGoogle Scholar
  4. 4.
    Zhao GY, Liu YL, Dong CS, Yang H, Fan XG (2010) Analysis of wrinkling limit of rotary-draw bending process for thin-walled rectangular tube. J Mater Process Technol 210(9):1224–1231.  https://doi.org/10.1016/j.jmatprotec.2010.03.009 CrossRefGoogle Scholar
  5. 5.
    Zhu YX, Liu YL, Li HP, Yang H (2013) Springback prediction for rotary-draw bending of rectangular H96 tube based on isotropic, mixed and Yoshida–Uemori two-surface hardening models. Mater Des 47:200–209.  https://doi.org/10.1016/j.matdes.2012.12.018 CrossRefGoogle Scholar
  6. 6.
    Yang H, Li H, Zhan M (2010) Friction role in bending behaviors of thin-walled tube in rotary-draw-bending under small bending radii. J Mater Process Technol 210(15):2273–2284.  https://doi.org/10.1016/j.jmatprotec.2010.08.021 CrossRefGoogle Scholar
  7. 7.
    Zhang Z-y, Yang H, Li H, Ren N, Tian Y-1 (2011) Bending behaviors of large diameter thin-walled CP-Ti tube in rotary draw bending. Pro Nat Sci-Mater 21(5):401–412.  https://doi.org/10.1016/S1002-0071(12)60076-8 CrossRefGoogle Scholar
  8. 8.
    Tian S, Liu Y, Yang H (2013) Effects of geometrical parameters on wrinkling of thin-walled rectangular aluminum alloy wave-guide tubes in rotary-draw bending. Chin J Aeronaut 26(1):242–248.  https://doi.org/10.1016/j.cja.2012.12.003 CrossRefGoogle Scholar
  9. 9.
    Li C, Yang H, Zhan M, Xu X-d, Li G-j (2009) Effects of process parameters on numerical control bending process for large diameter thin-walled aluminum alloy tubes. Trans Nonferrous Metals Soc China 19(3):668–673.  https://doi.org/10.1016/S1003-6326(08)60331-3 CrossRefGoogle Scholar
  10. 10.
    Zhao GY, Liu YL, Yang H, Lu CH, Gu RJ (2009) Three-dimensional finite-elements modeling and simulation of rotary-draw bending process for thin-walled rectangular tube. Mater Sci Eng A 499(1–2):257–261.  https://doi.org/10.1016/j.msea.2007.11.127 CrossRefGoogle Scholar
  11. 11.
    Li H, Yang H, Zhan M, Gu RJ (2007) The interactive effects of wrinkling and other defects in thin-walled tube NC bending process. J Mater Process Technol 187–188:502–507.  https://doi.org/10.1016/j.jmatprotec.2006.11.100 CrossRefGoogle Scholar
  12. 12.
    Zhu YX, Liu YL, Yang H, Li HP (2013) Improvement of the accuracy and the computational efficiency of the springback prediction model for the rotary-draw bending of rectangular H96 tube. Int J Mech Sci 66:224–232.  https://doi.org/10.1016/j.ijmecsci.2012.11.012 CrossRefGoogle Scholar
  13. 13.
    Song F, Yang H, Li H, Zhan M, Li G (2013) Springback prediction of thick-walled high-strength titanium tube bending. Chin J Aeronaut 26(5):1336–1345.  https://doi.org/10.1016/j.cja.2013.07.039 CrossRefGoogle Scholar
  14. 14.
    Hasanpour K, Barati M, Amini B, Poursina M (2013) The effect of anisotropy on wrinkling of tube under rotary draw bending. J Mech Sci Technol 27(3):783–792.  https://doi.org/10.1007/s12206-013-0124-9 CrossRefGoogle Scholar
  15. 15.
    Xue X, Liao J, Vincze G, Gracio J (2014) Twist Springback of asymmetric thin-walled tube in mandrel rotary draw bending process. Procedia Eng 81:2177–2183.  https://doi.org/10.1016/j.proeng.2014.10.305 CrossRefGoogle Scholar
  16. 16.
    Wen T (2014) On a new concept of rotary draw bend-die adaptable for bending tubes with multiple outer diameters under non-mandrel condition. J Mater Process Technol 214(2):311–317.  https://doi.org/10.1016/j.jmatprotec.2013.09.019 CrossRefGoogle Scholar
  17. 17.
    Zhao G-y, Liu Y-1, Yang H, Lu C-h (2010) Cross-sectional distortion behaviors of thin-walled rectangular tube in rotary-draw bending process. Trans Nonferrous Metals Soc China 20(3):484–489.  https://doi.org/10.1016/S1003-6326(09)60166-7 CrossRefGoogle Scholar
  18. 18.
    Guangjun L, Heng Y, Xudong X, Heng L, He Y (2018) Formability of thin-walled commercial pure titanium tube upon rotary draw bending. Rare Metal Mater Eng 47(1):26–32.  https://doi.org/10.1016/S1875-5372(18)30066-3 CrossRefGoogle Scholar
  19. 19.
    Oh C-K, Kim Y-J, Baek J-H, Kim Y-P, Kim W (2007) A phenomenological model of ductile fracture for API X65 steel. Int J Mech Sci 49(12):1399–1412.  https://doi.org/10.1016/j.ijmecsci.2007.03.008 CrossRefGoogle Scholar
  20. 20.
    Alegre JM, Cuesta II, Bravo PM (2011) Implementation of the GTN damage model to simulate the small punch test on pre-cracked specimens. Procedia Eng 10:1007–1016.  https://doi.org/10.1016/j.proeng.2011.04.166 CrossRefGoogle Scholar
  21. 21.
    Safdarian R (2018) Forming limit diagram prediction of 6061 aluminum by GTN damage model. Mech Ind 19(2):202CrossRefGoogle Scholar
  22. 22.
    Safdarian R (2020) Forming Limit Diagram Prediction of AISI 304–St 12 Tailor Welded Blanks Using GTN Damage Model. J Test EvalGoogle Scholar
  23. 23.
    (ASTM) ASfTaM (1999) Metals test methods and analytical proceduresGoogle Scholar
  24. 24.
    Björklund O (2014) Ductile Failure in High Strength Steel Sheets. Doctoral thesis, comprehensive summary, Linköping University Electronic Press, LinköpingGoogle Scholar
  25. 25.
    Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15CrossRefGoogle Scholar
  26. 26.
    Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389–407.  https://doi.org/10.1007/bf00036191 CrossRefGoogle Scholar
  27. 27.
    Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169.  https://doi.org/10.1016/0001-6160(84)90213-X CrossRefGoogle Scholar
  28. 28.
    Abbassi F, Belhadj T, Mistou S, Zghal A (2013) Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming. Mater Des 45:605–615.  https://doi.org/10.1016/j.matdes.2012.09.032 CrossRefGoogle Scholar
  29. 29.
    Chu CC, Needleman A (1980) Void nucleation effects in Biaxially stretched sheets. J Eng Mater Technol 102(3):249–256.  https://doi.org/10.1115/1.3224807 CrossRefGoogle Scholar
  30. 30.
    He M, Li F, Wang Z (2011) Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test. Chin J Aeronaut 24(3):378–386.  https://doi.org/10.1016/S1000-9361(11)60045-9 CrossRefGoogle Scholar
  31. 31.
    Safdarian R (2018) Failure prediction of Superheater tubes in rotary tube bending process using GTN damage model. Trans Indian Inst Metals 72(2).  https://doi.org/10.1007/s12666-018-1499-1
  32. 32.
    Hibbitt K, Sorensen (2002) ABAQUS/CAE User's Manual. Hibbitt, Karlsson & Sorensen, Incorporated,Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBehbahan Khatam Alanbia University of TechnologyBehbahanIran

Personalised recommendations